Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đề sai ở mẫu cuối nhé
đặt b + c - a = x ; a + c - b = y ; a + b - c = z
\(\Rightarrow a=\frac{y+z}{2};b=\frac{x+z}{2};c=\frac{x+y}{2}\)
\(\Rightarrow P=\frac{2\left(y+z\right)}{x}+\frac{9\left(x+z\right)}{2y}+\frac{8\left(x+y\right)}{z}=\frac{2y}{x}+\frac{9x}{2y}+\frac{2z}{x}+\frac{8x}{z}+\frac{9z}{2y}+\frac{8y}{z}\)
\(\ge6+8+12=26\)
Đặt: \(\hept{\begin{cases}b+c-a=2x\\c+a-b=2y\\a+b-c=2z\end{cases}}\Rightarrow x;y;z>0\text{ và }\hept{\begin{cases}a=y+z\\b=z+x\\c=x+y\end{cases}}\)
Áp dụng AM - GM, ta có:
\(2P=4\left(\frac{y+z}{x}\right)+9\left(\frac{x+z}{y}\right)+16\left(\frac{x+y}{z}\right)\)
\(=\left(4\frac{y}{x}+9\frac{x}{y}\right)+\left(4\frac{z}{x}+16\frac{x}{z}\right)+\left(9\frac{x}{y}+16\frac{x}{z}\right)\ge12+16+24=52\Rightarrow P\ge26\)
\(Đ\text{T}\Leftrightarrow3z=4y=6x\)
b+c-a > 0
a + c - b > 0
a + b - c > 0
Đặt b + c - a = x ; a + c - b = y ; a + b - c = z
=> x + y / 2 = c
y+z/2 = a
x+z/2 = b
Khi đó , P = \(\frac{4\frac{\left(y+z\right)}{2}}{x}+\frac{9\frac{x+z}{2}}{y}+\frac{16\frac{x+y}{2}}{z}\)
\(=\frac{1}{2}\left[\frac{4\left(y+z\right)}{x}+\frac{9\left(x+z\right)}{y}+\frac{16\left(x+y\right)}{z}\right]\)
\(=\frac{1}{2}\left[\left(\frac{4y}{x}+\frac{9x}{y}\right)+\left(\frac{4z}{x}+\frac{16x}{z}\right)+\left(\frac{9z}{y}+\frac{16y}{z}\right)\right]\)
Tới đây dễ rồi nha , áp dụng bđt cô - si nha anh
Đặt \(\hept{\begin{cases}b+c-a=2x\\c+a-b=2y\\a+b-c=2z\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a=y+z\\b=x+z\\c=x+y\end{cases}}\)
\(\Rightarrow P=\frac{1}{2}.\left(\frac{4\left(y+z\right)}{x}+\frac{9\left(x+z\right)}{y}+\frac{16\left(x+y\right)}{z}\right)\)
\(=\frac{1}{2}.\left(\left(\frac{4y}{x}+\frac{9x}{y}\right)+\left(\frac{4z}{x}+\frac{16x}{z}\right)+\left(\frac{9z}{y}+\frac{16y}{z}\right)\right)\)
\(\ge\frac{1}{2}.\left(2.2.3+2.2.4+2.3.4\right)=26\)
Đặt \(\left\{{}\begin{matrix}b+c-a=x\\a+c-b=y\\a+b-c=z\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{y+z}{2}\\b=\frac{x+z}{2}\\c=\frac{x+y}{2}\end{matrix}\right.\)
\(P=\frac{2\left(y+z\right)}{x}+\frac{9\left(x+z\right)}{2y}+\frac{8\left(x+y\right)}{z}\)
\(P=\left(\frac{2y}{x}+\frac{9x}{2y}\right)+\left(\frac{2z}{x}+\frac{8x}{z}\right)+\left(\frac{9z}{2y}+\frac{8y}{z}\right)\)
\(P\ge2\sqrt{\frac{18xy}{2xy}}+2\sqrt{\frac{16xz}{xz}}+2\sqrt{\frac{72yz}{2yz}}=26\)
Dấu "=" xảy ra khi \(x=\frac{2y}{3}=\frac{z}{2}\)
C/m dạng tổng quát \(\frac{a^{n+1}}{b+c-a}+\frac{b^{n+1}}{c+a-b}+\frac{c^{n+1}}{a+b-c}\ge a^n+b^n+c^n\left(n\ge1\right)\)
Không mất tính tổng quát giả sử \(a\ge b\ge c>0\)
Suy ra \(\frac{a}{b+c-a}\ge\frac{b}{c+a-b}\ge\frac{c}{a+b-c}\)
Áp dụng BĐT Chebyshev ta có:
\(Σ\frac{a^{n+1}}{b+c-a}=Σa^n\cdot\frac{a}{b+c-a}\ge\frac{1}{3}Σa^n\cdotΣ\frac{a}{b+c-a}\geΣa^n\)
Đặt \(b+c-a=2x,c+a-b=2y,a+b-c=2z\to x,y,z>0\) v
à thỏa mãn \(a=y+z,b=z+x,c=x+y.\) Đặt \(S=2VT\) (hai lần vế trái của bất đẳng thức) thì ta có
\(S=\frac{4\left(y+z\right)}{x}+\frac{9\left(x+z\right)}{y}+\frac{16\left(x+y\right)}{z}=\left(\frac{4y}{x}+\frac{9x}{y}\right)+\left(\frac{4z}{x}+\frac{16x}{z}\right)+\left(\frac{9z}{y}+\frac{16y}{z}\right)\)
Theo bất đẳng thức Cô-Si ta được
\(S\ge2\sqrt{\frac{4y}{x}\cdot\frac{9x}{y}}+2\sqrt{\frac{4z}{x}\cdot\frac{16x}{z}}+2\sqrt{\frac{9z}{y}\cdot\frac{16y}{z}}=2\cdot6+2\cdot8+2\cdot12=2\cdot26=52.\)
Suy ra \(VT=\frac{S}{2}\ge\frac{52}{2}=26\). (ĐPCM)