K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2020

Từ giả thiết : \(abc=b+2c\)

\(\Leftrightarrow\frac{b+2c}{bc}=a\)

\(\Leftrightarrow\frac{1}{c}+\frac{2}{b}=a\)(1)

Áp dụng bất đẳng thức \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

Ta có : \(P=\frac{3}{b+c-a}+\frac{4}{c+a-b}+\frac{5}{a+b-c}\)

\(=\frac{1}{b+c-a}+\frac{1}{c+a-b}+2\left(\frac{1}{b+c-a}+\frac{1}{a+b-c}\right)+3\left(\frac{1}{c+a-b}+\frac{1}{a+b-c}\right)\)

\(\ge\frac{4}{2c}+2\cdot\frac{4}{2b}+3\cdot\frac{4}{2a}=\frac{2}{c}+\frac{4}{b}+\frac{6}{a}\)

Áp dụng (1) vào \(P\)\(\frac{2}{c}+\frac{4}{b}+\frac{6}{c}=2\left(\frac{1}{c}+\frac{2}{b}+\frac{3}{a}\right)=2\left(a+\frac{3}{a}\right)\ge4\sqrt{3}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\sqrt{3}\)

Vậy \(Min_P=4\sqrt{3}\Leftrightarrow a=b=c=\sqrt{3}\)

14 tháng 6 2020

Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y},x>0,y>0\)

\(P=\frac{1}{b+c-a}+\frac{1}{a+c-b}+2\left(\frac{1}{b+c-a}+\frac{1}{a+b-c}\right)+3\left(\frac{1}{a+c-b}+\frac{1}{a+b-c}\right)\)

\(\Rightarrow P\ge\frac{2}{c}+\frac{4}{b}+\frac{6}{a}\)

Từ giả thiết ta có: \(\frac{1}{c}+\frac{2}{b}=a\) nên \(\frac{2}{c}+\frac{4}{b}+\frac{6}{a}=2\left(\frac{1}{c}+\frac{2}{b}+\frac{3}{a}\right)=2\left(a+\frac{3}{a}\right)\ge4\sqrt{3}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\sqrt{3}\)

Vậy giá trị nhỏ nhất của P=\(4\sqrt{3}\) đạt được khi \(a=b=c=\sqrt{3}\)

1 tháng 6 2017

Theo giả thiết có : \(abc\ne0\)chia hai vế của phương trình cho \(abc\)có : \(\frac{2ab+3bc+4ac}{abc}=\frac{5abc}{abc}\Leftrightarrow\frac{2}{a}+\frac{3}{b}+\frac{4}{c}=1\)

Xét : (ở tử của p  tắc 7 = 4+3; 6= 4+2; 5=2+3 rồi nhóm nhân tử chung)

\(P=\frac{7}{a+b-c}+\frac{6}{b+c-a}+\frac{5}{c+a-b}\)

\(=\frac{4}{a+b-c}+\frac{3}{a+b-c}+\frac{4}{b+c-a}+\frac{2}{b+c-a}+\frac{3}{c+a-b}+\frac{2}{c+a-b}\)

\(=4\left(\frac{1}{a+b-c}+\frac{1}{b+c-a}\right)+3\left(\frac{1}{a+b-c}+\frac{1}{c+a-b}\right)+2\left(\frac{1}{b+c-a}+\frac{1}{c+a-b}\right)\)

Nếu có \(x,y\left(x>0,y>0\right)\)ta luôn có \(\left(x+y\right)^2\ge4xy\Leftrightarrow\frac{x+y}{xy}\ge\frac{4}{x+y}\Leftrightarrow\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

áp dụng vào P có

\(\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{4}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\)

\(\frac{1}{a+b-c}+\frac{1}{c+a-b}\ge\frac{4}{a+b-c+c+a-b}=\frac{4}{2a}=\frac{2}{a}\)

\(\frac{1}{b+c-a}+\frac{1}{c+a-b}\ge\frac{4}{b+c-a+c+a-b}=\frac{4}{2c}=\frac{2}{c}\)

Cộng từng vế của 3 bất đẳng thức :

\(P\ge4.\frac{2}{b}+3.\frac{2}{a}+2.\frac{2}{c}=2\left(\frac{4}{b}+\frac{3}{a}+\frac{2}{c}\right)=2.5=10\)

Vậy \(P_{min}=10\)dấu "=" sảy ra khi \(a=b=c=\frac{9}{5}\)

1 tháng 6 2017

trên đầu mình viết nhầm nhe chỗ tổng phân số bằng 5 chứ ko phải 1 

11 tháng 6 2016

Từ giả thiết : \(2ab+3bc+4ac=5abc\)Vì a,b,c là độ dài ba cạnh của một tam giác nên chia cả hai vế cho \(abc>0\)được : 

\(\frac{2}{c}+\frac{3}{a}+\frac{4}{b}=5\)

Áp dụng bất đẳng thức phụ sau : \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)( x,y là số dương.  Dấu đẳng thức xảy ra <=> x = y  )

(Bạn tự chứng minh bằng biến đổi tương đương nhé!)

Ta có : \(P=\frac{7}{a+b-c}+\frac{6}{b+c-a}+\frac{5}{c+a-b}=\left(\frac{2}{c+a-b}+\frac{2}{b+c-a}\right)+\left(\frac{3}{c+a-b}+\frac{3}{a+b-c}\right)+\left(\frac{4}{a+b-c}+\frac{4}{b+c-a}\right)\)\(=2\left(\frac{1}{c+a-b}+\frac{1}{b+c-a}\right)+3\left(\frac{1}{c+a-b}+\frac{1}{a+b-c}\right)+4\left(\frac{1}{a+b-c}+\frac{1}{b+c-a}\right)\ge2.\frac{4}{c+a-b+b+c-a}+3.\frac{4}{c+a-b+a+b-c}+4.\frac{4}{a+b-c+b+c-a}=\frac{8}{2c}+\frac{12}{2a}+\frac{16}{2b}=\frac{4}{c}+\frac{6}{a}+\frac{8}{b}=2\left(\frac{2}{c}+\frac{3}{a}+\frac{4}{b}\right)=10\)Vậy Min P = 10 \(\Leftrightarrow a=b=c=\frac{9}{5}\)

11 tháng 6 2016

2ab+3bc+4ca=5abc

chia hai vế với abc

=>\(\frac{2}{c}+\frac{3}{a}+\frac{4}{b}=5\)

=> tự giải tiếp

20 tháng 2 2021

Áp dụng bổ đề quen thuộc \(x^3+y^3\ge xy\left(x+y\right)\), ta được: \(\frac{1}{2a^3+b^3+c^3+2}=\frac{1}{\left(a^3+b^3\right)+\left(a^3+c^3\right)+2}\le\frac{1}{ab\left(a+b\right)+ac\left(a+c\right)+2}\)\(=\frac{bc}{ab^2c\left(a+b\right)+abc^2\left(a+c\right)+2bc}=\frac{bc}{b\left(a+b\right)+c\left(a+c\right)+2bc}\)\(\le\frac{bc}{ab+ac+4bc}=\frac{bc}{b\left(a+c\right)+c\left(a+b\right)+2bc}\)\(\le\frac{1}{9}\left(\frac{bc}{b\left(a+c\right)}+\frac{bc}{c\left(a+b\right)}+\frac{bc}{2bc}\right)=\frac{1}{9}\left(\frac{c}{a+c}+\frac{b}{a+b}+\frac{1}{2}\right)\)(1)

Tương tự, ta có: \(\frac{1}{a^3+2b^3+c^3+2}\le\frac{1}{9}\left(\frac{c}{b+c}+\frac{a}{a+b}+\frac{1}{2}\right)\)(2); \(\frac{1}{a^3+b^3+2c^3+2}\le\frac{1}{9}\left(\frac{b}{b+c}+\frac{a}{a+c}+\frac{1}{2}\right)\)(3)

Cộng theo vế ba bất đẳng thức (1), (2), (3), ta được: \(P\le\frac{1}{9}\left(1+1+1+\frac{3}{2}\right)=\frac{1}{2}\)

Vậy giá trị lớn nhất của P là \(\frac{1}{2}\)đạt được khi x = y = z = 1

11 tháng 11 2018

giỏi thì làm bài nÀY nèk

chứ mấy bác cứ đăng linh ta linh tinh lên online math

11 tháng 11 2018

Linh ta linh tinh gì. ko biết làm thì tôi mới nhờ mọi người chứ

đây là câu cuối bài khảo sat trg tôi. ko làm được thì đừng phát biểu linh tinh

11 tháng 11 2017

Ta có:

\(\frac{a+1}{1+b^2}=a+1-\frac{\left(a+1\right)b^2}{1+b^2}\ge a+1-\frac{\left(a+1\right)b^2}{2b}=a+1-\frac{ab+b}{2}\left(1\right)\)

Tương tụ ta có:

\(\hept{\begin{cases}\frac{\left(b+1\right)}{1+c^2}\ge b+1-\frac{bc+c}{2}\left(2\right)\\\frac{\left(c+1\right)}{1+a^2}\ge c+1-\frac{ca+a}{2}\left(3\right)\end{cases}}\)

Từ (1), (2), (3) ta có:

\(M\ge a+b+c+3-\frac{ab+bc+ca+a+b+c}{2}\)

\(=3+3-\frac{ab+bc+ca+3}{2}\)

\(\ge\frac{9}{2}-\frac{\left(a+b+c\right)^2}{6}=3\)