Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1.\left(x^3-1\right)\left(x^2+1\right)=0\)
\(< =>\left\{{}\begin{matrix}x^3-1=0\\x^2+1=0\end{matrix}\right.\)
\(< =>\left\{{}\begin{matrix}x^3=1\\x^2=-1\left(kxđ\right)\end{matrix}\right.\)
<=>x=1
vậy ...
\(2.\left(2x+6\right)\left(3x^2-12\right)=0\)
\(< =>\left\{{}\begin{matrix}2x+6=0\\3x^2-12=0\end{matrix}\right.\)
\(< =>\left\{{}\begin{matrix}2x=-6\\3x^2=12\end{matrix}\right.\)
\(< =>\left\{{}\begin{matrix}x=-3\\x^2=4\end{matrix}\right.\)
\(< =>\left\{{}\begin{matrix}x=-3\\x=2\\x=-2\end{matrix}\right.\)
vậy ...
Ta có:
\(A=\left(\frac{1}{2}\right)^2+\left(\frac{1}{3}\right)^2+...+\left(\frac{1}{1000}\right)^2< 1\)
\(A=\frac{1}{4}+\frac{1}{9}+...+\frac{1}{1000000}< 1\)
\(\frac{1}{4}< \frac{1}{1\cdot2}\)
\(\frac{1}{9}< \frac{1}{2\cdot3}\)
\(...\)
\(\frac{1}{1000000}< \frac{1}{999.1000}\)
\(A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{999\cdot1000}\)
\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{999}-\frac{1}{1000}\)
\(A< \frac{1}{1}-\frac{1}{1000}< 1\)
\(\Rightarrow A< 1\)
\(A< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{999.1000}\)
\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{999}-\frac{1}{1000}\)
\(A< 1-\frac{1}{1000}\)
\(=>A< 1\)
\(=>ĐPCM\)
125 : \(x\) = 22 - (-1)
125 : \(x\) = 4 + 1
125 : \(x\) = 5
\(x\) = 125 : 5
\(x\) = 25
18 - (\(x\) + 14) : 3 = 27
(\(x\) + 14) : 3 = 18 - 27
(\(x\) + 14) : 3 = - 9
\(x\) + 14 = - 9.3
\(x\) + 14 = -27
\(x\) = -27 - 14
\(x\) = - 41
S = 1 + 2 + 22 + 23 + 24 + 25 + 26 + 27
= (1 + 2) + (22 + 23) + (24 + 25) + (26 + 27)
= (1 + 2) + 22(1 + 2) + 24(1 + 2) + 26(1 + 2)
= (1 + 2)(1 + 22 + 24 + 26)
= 3(1 + 22 + 24 + 26) \(⋮3\)(ĐPCM)
2S = 1 + 2 + 22 + 23 + 24 + 25 + 26 + 27
S = (1+2 ) + (22 + 23 ) + (24 + 25 ) + (26 +27)
S = 3 + 22(1+2) + 24(1+2) + 26(1+2)
S = 3+22.3 + 24.3 + 26 .3
S = 3(1+22 + 24 + 26 ) \(⋮\) 3
=> đpcm
A = 1+2+22+...+210
=> 2A = 2+22+23+...+211
=> 2A - A = (2+22+23+...+211) - (1+2+22+...+210)
=> A = 211 - 1
B = 1+3+32+...+310
=> 3B = 3+32+33+...+311
=> 3B - B = (3+32+33+...+311) - (1+3+32+...+310)
=> 2B = 311 - 1
=> B = \(\frac{3^{11}-1}{2}\)
A = 1 + 2 1 + 2 2 + 2 3 + ... + 2 9 + 2 10
2A = 2 + 2 2 + 2 3 + 2 4 + ... + 2 10 + 2 11
2A - A = ( 2 + 2 2 + 2 3 + 2 4 + ... + 2 10 + 2 11 )
- ( 1 + 2 1 + 2 2 + 2 3 + ... + 2 9 + 2 10 )
A = 2 11 - 1
A = 2047
B = 1 + 3 1 + 3 2 + 3 3 + ... + 3 9 + 3 10
3B = 3 1 + 3 2 + 3 3 + 3 4 + ... + 3 10 + 3 11
3B - B= ( 3 1 + 3 2 + 3 3 + 3 4 + ... + 3 10 + 3 11 )
- ( 1 + 3 1 + 3 2 + 3 3 + ... + 3 9 + 3 10 )
2B = 3 11 - 1
B = \(\frac{3^{11}-1}{2}\)
B = 88573
số cuối là mấy vậy bạn