Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1+2+22+...+210
=> 2A = 2+22+23+...+211
=> 2A - A = (2+22+23+...+211) - (1+2+22+...+210)
=> A = 211 - 1
B = 1+3+32+...+310
=> 3B = 3+32+33+...+311
=> 3B - B = (3+32+33+...+311) - (1+3+32+...+310)
=> 2B = 311 - 1
=> B = \(\frac{3^{11}-1}{2}\)
A = 1 + 2 1 + 2 2 + 2 3 + ... + 2 9 + 2 10
2A = 2 + 2 2 + 2 3 + 2 4 + ... + 2 10 + 2 11
2A - A = ( 2 + 2 2 + 2 3 + 2 4 + ... + 2 10 + 2 11 )
- ( 1 + 2 1 + 2 2 + 2 3 + ... + 2 9 + 2 10 )
A = 2 11 - 1
A = 2047
B = 1 + 3 1 + 3 2 + 3 3 + ... + 3 9 + 3 10
3B = 3 1 + 3 2 + 3 3 + 3 4 + ... + 3 10 + 3 11
3B - B= ( 3 1 + 3 2 + 3 3 + 3 4 + ... + 3 10 + 3 11 )
- ( 1 + 3 1 + 3 2 + 3 3 + ... + 3 9 + 3 10 )
2B = 3 11 - 1
B = \(\frac{3^{11}-1}{2}\)
B = 88573
a) \(\left(3^4.57-9^2.21\right):3^5\)
\(=\left(3^4.57-3^4.21\right):3^5\)
\(=\left[3^4\left(57-21\right)\right]:3^5\)
\(=3^4.36:3^5\)
\(=3^4.2^2.3^2:3^5\)
\(=3.4\)
\(=12\)
b) Ta có; \(1^3+2^3+...+9^3=2025\)
\(\Leftrightarrow2^3.\left(1^3+2^3+....+9^3\right)=2^3.2025\)
\(\Leftrightarrow2^3+4^5+...+18^3=16200\)
`#3107.101107`
\(A = 2 + 2^2 + 2^3 + ... + 2^{2020} + 2^{2021} + 2^{2022}\)
\(= (2 + 2^2) + (2^3 + 2^4) + ... + (2^{2021} + 2^{2022})\)
\(=2(1+2) + 2^3(1 + 2) + ... + 2^{2021}(1 + 2)\)
\(=(1 + 2)(2 + 2^3 + ... + 2^{2021})\)
\(= 3(2 + 2^3 + ... + 2^{2021})\)
Vì \(3(2 + 2^3 + ... + 2^{2021})\) \(\vdots\) \(3\)
`\Rightarrow A \vdots 3`
Vậy, `A \vdots 3.`
a) \(204-84:12=204-7=197\)
b) \(15.2^3+4.3^2-5.7=15.8+4.9+5.7=120+36+35=156+35=191\)
c) \(5^6:5^3+2^3.2^2=5^3+2^5=125+32=157\)
d) \(164.53+47.164=164.\left(53+47\right)=164.100=16400\)
_Chúc bạn học tốt_
Bằng nhau