K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2017

giả sử abc và ab+bc+ca không nguyên tố cùng nhau 
=> tồn tại d là số nguyên tố và d là ước chung của abc và ab+bc+ca 
abc chia hết cho d mà a,b,c nguyên tố cùng nhau từng đôi một nên có 3 TH: 
TH1: a chia hết cho d => ab,ac chia hết cho d 
mà ab+bc+ca chia hết cho d 
=> bc chia hết cho d => b hoặc c chia hết cho d (trái với a,b,c đôi một nguyên tố cùng nhau) 
TH2: b chia hết cho d => ba,bc chia hết cho d 
mà ab+bc+ca chia hết cho d 
=> ac chia hết cho d => a hoặc c chia hết cho d (trái với a,b,c đôi một nguyên tố cùng nhau) 
TH3: c chia hết cho d => ca,cb chia hết cho d 
mà ab+bc+ca chia hết cho d 
=> ab chia hết cho d => a hoặc b chia hết cho d (trái với a,b,c đôi một nguyên tố cùng nhau) 
vậy: giả thiết đưa ra là sai 
kết luận: abc và ab+bc+ca nguyên tố cùng nhau

10 tháng 2 2018

kho qua

28 tháng 8 2015

 c chia hết cho d => ca,cb chia hết cho d 
mà ab+bc+ca chia hết cho d 
=> ab chia hết cho d => a hoặc b chia hết cho d (trái với a,b,c đôi một nguyên tố cùng nhau) 
vậy: giả thiết đưa ra là sai 
kết luận: abc và ab+bc+ca nguyên tố cùng nhau

14 tháng 8 2021

Ta có: \(\left(a^2+3\right)\left(b^2+3\right)\left(c^2+3\right)=\left(a^2+ab+bc+ca\right)\left(b^2+ab+bc+ca\right)\left(c^2+ab+bc+ca\right)=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)

31 tháng 3 2022

a) xét ΔABC ta có

C<A

=> AB < BC ( quan hệ giữa góc và cạnh đối diện trong Δ)

b)xét ΔABD ta có

BD = BA

=> ΔABD là Δ cân tại B

mà B=60o

=> ΔABD làΔ đều

 

23 tháng 8 2015

Cho a là số tự nhiênchia 6 dư 2 và b là số tự nhiên chia 6 dư 3. Chứng minh axb chia hết cho 6

11 tháng 7 2017

\(\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{\overline{ca}+\overline{ab}}{c+a}=\frac{\overline{ab}+\overline{bc}-\overline{bc}-\overline{ca}+\overline{ca}+\overline{ab}}{a+b-b-c+c+a}=\frac{2\overline{ab}}{2a}=10+\frac{b}{a}\)

\(\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{\overline{ca}+\overline{ab}}{c+a}=\frac{\overline{ab}+\overline{bc}+\overline{bc}+\overline{ca}-\overline{ca}-\overline{ab}}{a+b+b+c-c-a}=\frac{2\overline{bc}}{2b}=10+\frac{c}{b}\)

\(\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{\overline{ca}+\overline{ab}}{c+a}=\frac{-\overline{ab}-\overline{bc}+\overline{bc}+\overline{ca}+\overline{ca}+\overline{ab}}{-a-b+b+c+c+a}=\frac{2\overline{ca}}{2c}=10+\frac{a}{c}\)

=> \(\frac{b}{a}=\frac{c}{b}=\frac{a}{c}\Rightarrow\frac{b+c+a}{a+b+c}=1\Rightarrow a=b=c\)

4 tháng 9 2023

chắc khó qué nên ko ai lm cho tớ hic😥

4 tháng 9 2023

Bạn ơi, mình nghĩ là bạn nên chia các bài ra từng CH khác nhau, như vậy các TV sẽ dễ giúp đỡ bạn hơn và chất lượng ctrl có thể tốt hơn bạn nhé.