K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 2 2019

gọi n(a,b) là VTPT của Đường thẳng d ; A(1,2) ϵ​ d

--> PTTQ:

(d): a(x-1)+b(y-2)=0

--> ax+by-a-2b=0

d cách đều B,C nên

d(B,d)=d(C,d)

Rồi cứ thế thay công thức rồi tìm đc mối quan hệ a,b. Sau đó thay vào pt đường thẳng d là đc

20 tháng 8 2022

Minh cũng nghĩ vậy mà thấy phương pháp trên mạng làm khác quá

2 tháng 4 2016

Giả sử đường thẳng \(\Delta\) cần tìm có phương trình dạng :

\(ax+by+a-3b=0,a^2+b^2\ne0\)

Khi đó :

\(d\left(A;\Delta\right)=\frac{\left|a+2b+a-3b\right|}{\sqrt{a^2+b^2}}=\frac{\left|2a-b\right|}{\sqrt{a^2+b^2}}\)

\(d\left(B;\Delta\right)=\frac{\left|3a+4b+a-3b\right|}{\sqrt{a^2+b^2}}=\frac{\left|4a+b\right|}{\sqrt{a^2+b^2}}\)

Do  \(\Delta\) cách đều A, B nên \(d\left(A;\Delta\right)=d\left(B;\Delta\right)\) hay :

\(\frac{\left|2a-b\right|}{\sqrt{a^2+b^2}}=\frac{\left|4a+b\right|}{\sqrt{a^2+b^2}}\)\(\Leftrightarrow\left|2a-b\right|=\left|4a+b\right|\)

                            \(\Leftrightarrow\begin{cases}a=-b\\a=0\end{cases}\)

- Nếu a=0 thì do \(a^2+b^2\ne0\) nên \(b\ne0\) tùy ý. Do đó, có thể chọn b =1 và ta được \(\Delta_1:y-3=0\)

- Nếu a=-b thì do \(a^2+b^2\ne0\) nên \(b\ne0\) tùy ý. Do đó, có thể chọn a = 1, b=-1 và ta được \(\Delta_2:x-y+4=0\)

Vậy qua C có 2 đường thẳng \(\Delta_1:y-3=0\) và \(\Delta_2:x-y+4=0\) thỏa mãn yêu cầu đề bài

 
2 tháng 4 2016

Đường thẳng \(\Delta\) cách đều 2 điểm A, B khi và chỉ khi hoặc  \(\Delta\)  song song với AB hoặc  \(\Delta\)  đi qua trung điểm đoạn AB

- Nếu  \(\Delta\)  // AB thì  \(\Delta\)  nhận vec tơ  \(\overrightarrow{AB}=\left(2;2\right)=2\left(1;1\right)\) làm vec tơ chỉ phương, suy ra nếu có vec tơ pháp tuyến \(\overrightarrow{n}=\left(1;-1\right)\). Vậy \(\Delta:x-y+4=0\)

- Nếu  \(\Delta\)  đi qua trung điểm M(2;3) của đoạn AB  thì  \(\Delta\)  nhận vec tơ  \(\overrightarrow{CM}=\left(3;0\right)=3\left(1;0\right)\) làm vec tơ chỉ phương, suy ra nếu có vec tơ pháp tuyến \(\overrightarrow{m}=\left(0;1\right)\). Vậy \(\Delta:y-3=0\)

  

  àm vec tơ chỉ phương, suy ra nếu có vec tơ pháp tuyến \(\overrightarrow{m}=\left(0;1\right)\). Vậy \(\Delta:y-3=0\)

 

\(\Delta\) đi qua trung điểm M(2;3) của đoạn AB thì nhận vec tơ \(\overrightarrow{CM}=\left(3;0\right)=3\left(1;0\right)\)

10 tháng 3 2019

Ta tìm được duong thẳng d1 đi qua A có véc tơ chỉ phương là BC và dường thẳng d2 đi qua A và trung điểm của BC

d1:-4x+y+3=0

D2:x-1=0

31 tháng 5 2020

Bài 1. PHƯƠNG TRÌNH ĐƯỜNG THẲNG

5:

Gọi (d): y=ax+b là phương trình cần tìm

Theo đề, ta có hệ:
3a+b=-1 và 2a+b=3

=>a=-4 và b=11

=>y=-4x+11

4:

vecto BC=(1;-1)

=>AH có VTPT là (1;-1)

Phương trình AH là:

1(x-1)+(-1)(y+3)=0

=>x-1-y-3=0

=>x-y-4=0

10 tháng 5 2023
19 tháng 6 2021

\(\left(C\right):x^2+y^2+4x-6y-12=0\)

\(\Leftrightarrow\left(C\right):\left(x+2\right)^2+\left(y-3\right)^2=25\)

\(\Rightarrow I=\left(-2;3\right)\) là tâm đường tròn, bán kính \(R=5\)

Kẻ IH vuông góc với AB.

\(\Rightarrow IH=\sqrt{R^2-AH^2}=\sqrt{5^2-\dfrac{1}{4}.50}=\dfrac{5\sqrt{2}}{2}\)

Đường thẳng AB có dạng: \(ax+by-2a=0\left(a^2+b^2\ne0\right)\)

Ta có: \(d\left(I;AB\right)=\dfrac{\left|-2a+3b-2a\right|}{\sqrt{a^2+b^2}}=\dfrac{5\sqrt{2}}{2}\)

\(\Leftrightarrow7a^2-48ab-7b^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=7b\\b=-7a\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}AB:7x+y-14=0\\AB:x-7y-2=0\end{matrix}\right.\)

a: vecto AB=(2;-1)

PTTS AB là:

x=1+2t và y=2-t

vecto AB=(2;-1)

=>VTPT là (1;2)

PTTQ của AB là:

1(x-1)+2(y-2)=0

=>x-1+2y-4=0

=>x+2y-5=0

c:PT đường cao CH là:

2(x-5)+(-1)(y-4)=0

=>2x-10-y+4=0

=>2x-y-6=0

Tọa độ hình chiếu của C trên AB là:

2x-y-6=0 và x+2y-5=0

=>C(17/5;4/5)

e: PT (C) có dạng là:

x^2+y^2-2ax-2by+c=0

Theo đề, ta có:

1+4-2a-4b+c=0 và 9+1-6a-2b+c=0 và 25+16-10a-8b+c=0

=>a=23/8; b=13/4; c=55/4

=>(C): x^2+y^2-23/4x-13/2x+55/4=0

=>x^2-2*x*23/8+529/64+y^2-2*x*13/4+169/16=325/64

=>(x-23/8)^2+(y-13/4)^2=325/64

a: A(1;2); B(2;1)

=>\(\overrightarrow{AB}=\left(1;-1\right)\)

=>VTPT là (1;1)

Phương trình đường thẳng AB là:

1(x-1)+2(y-1)=0

=>x-1+2y-2=0

=>x+2y-3=0

b:

M(1;3); Δ: 3x+4y+10=0

Khoảng cách từ M đến Δ là:

\(d\left(M;\text{Δ}\right)=\dfrac{\left|1\cdot3+3\cdot4+10\right|}{\sqrt{3^2+4^2}}=\dfrac{\left|3+12+10\right|}{5}=5\)