K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
1 tháng 10 2019

Lời giải:

\(A(-1;1); B(1;3)\Rightarrow \overrightarrow{AB}=(2;2)\Rightarrow \overrightarrow{n}_{AB}=(-2;2)\)

Do đó PTĐT $AB$ là:

\(-2(x+1)+2(y-1)=0\)

\(\Leftrightarrow -2x+2y-4=0\)

Với $x_C=-2; y_C=0$ ta thấy: \(-2x_C+2y_C-4=0\). Do đó $C$ nằm trên đường thẳng $AB$

Hay $A,B,C$ thẳng hàng (đpcm)

AH
Akai Haruma
Giáo viên
17 tháng 9 2019

Lời giải:

\(A(-1;1); B(1;3)\Rightarrow \overrightarrow{AB}=(2;2)\Rightarrow \overrightarrow{n}_{AB}=(-2;2)\)

Do đó PTĐT $AB$ là:

\(-2(x+1)+2(y-1)=0\)

\(\Leftrightarrow -2x+2y-4=0\)

Với $x_C=-2; y_C=0$ ta thấy: \(-2x_C+2y_C-4=0\). Do đó $C$ nằm trên đường thẳng $AB$

Hay $A,B,C$ thẳng hàng (đpcm)

a: \(\overrightarrow{AB}=\left(2;2\right)\)

\(\overrightarrow{AC}=\left(-1;-1\right)\)

Vì 2/-1=2/-1

nên A,B,C thẳng hàng

b: \(AB=\sqrt{2^2+2^2}=2\sqrt{2}\)

\(AC=\sqrt{\left(-1\right)^2+\left(-1\right)^2}=\sqrt{2}\)

\(BC=\sqrt{\left(-2-1\right)^2+\left(0-3\right)^2}=3\sqrt{2}\)

=>AB/BC=2/3; AC/BC=1/3; AB/AC=2

10 tháng 3 2019

Ta tìm được duong thẳng d1 đi qua A có véc tơ chỉ phương là BC và dường thẳng d2 đi qua A và trung điểm của BC

d1:-4x+y+3=0

D2:x-1=0

31 tháng 5 2020

Bài 1. PHƯƠNG TRÌNH ĐƯỜNG THẲNG

16 tháng 5 2017

a) \(\overrightarrow{AB}\left(2;-2\right)\); \(\overrightarrow{CA}=\left(4;-4\right)\).
\(\dfrac{2}{4}=\dfrac{-2}{-4}\) nên \(\overrightarrow{AB};\overrightarrow{CA}\) cùng phương . Suy ra ba điểm A, B, C thẳng hàng.
\(\overrightarrow{AB}\left(2;1\right)\); \(\overrightarrow{AC}\left(m+3;2m\right)\).
3 điểm A, B, C thẳng hàng nên hai véc tơ \(\overrightarrow{AB},\overrightarrow{AC}\) cùng phương.
Suy ra: \(\dfrac{m+3}{2}=\dfrac{2m}{1}\Leftrightarrow m+3=4m\)\(\Leftrightarrow m=1\).

10 tháng 5 2022

a) Gọi đường tròn cần tìm là \(\left(C\right):x^2+y^2-2ax-2by+c=0\)

\(A\left(-1;1\right)\in\left(C\right)\Rightarrow1+1+2a-2b+c=0\Rightarrow2a-2b+c=-2\)

\(B\left(3;1\right)\in\left(C\right)\Rightarrow9+1-6a-2b+c=0\Rightarrow-6a-2b+c=-10\)

\(C\left(1;3\right)\in\left(C\right)\Rightarrow1+9-2a-6b+c=0\Rightarrow-2a-6b+c=-10\)

Giải hệ phương trình ta được: \(a=1;b=1;c=-2\)

Vậy đường tròn cần tìm là: \(x^2+y^2-2x-2y-2=0\)

10 tháng 5 2022

b) Ta có \(\left(C\right):x^2+y^2-4x+6y+3=0\)

\(\Rightarrow a=\dfrac{-4}{-2}=2;b=\dfrac{6}{-2}=-3;c=3\)

\(\Rightarrow I\left(2;-3\right)\) là tâm, bán kính \(R=\sqrt{2^2+\left(-3\right)^2-3}=\sqrt{10}\)

Để \(\left(\Delta\right)\) tiếp xúc đường tròn \(\Leftrightarrow d\left(I;\Delta\right)=R\)

\(\Leftrightarrow\dfrac{\left|9+m\right|}{\sqrt{10}}=\sqrt{10}\Leftrightarrow\left|9+m\right|=10\Leftrightarrow\left[{}\begin{matrix}9+m=10\\9+m=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=1\\m=-19\end{matrix}\right.\)

NV
22 tháng 11 2019

\(\overrightarrow{AB}=\left(6;3\right)\) ; \(\overrightarrow{AC}=\left(5;-3\right)\)

Ta có \(\frac{5}{6}\ne\frac{-3}{3}\Rightarrow\overrightarrow{AB}\)\(\overrightarrow{AC}\) ko cùng phương nên A;B;C ko thẳng hàng

\(\Rightarrow\) A;B;C là 3 đỉnh của 1 tam giác

2/ Gọi \(I\left(x;0\right)\Rightarrow\overrightarrow{AI}=\left(x+4;-1\right)\)

Để A;B;I thẳng hàng \(\Rightarrow\frac{x+4}{6}=-\frac{1}{3}\Rightarrow x+4=-2\Rightarrow x=-6\)

\(\Rightarrow I\left(-6;0\right)\)