Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`@` `\text {Ans}`
`\downarrow`
`a)`
`A(x) = \(3(x^2+2-4x)-2x(x-2)+17\)
`= 3x^2 + 6 - 12x - 2x^2 + 4x + 17`
`= x^2 - 8x + 23`
Hệ số cao nhất: `1`
Hệ số tự do: `23`
`B(x) = \(3x^2-7x+3-3(x^2-2x+4)\)
`=3x^2 - 7x + 3 - 3x^2 + 6x - 12`
`= -x - 9`
Hệ số cao nhất: `-1`
Hệ số tự do: `-9`
`b)`
`N(x) - B(x) = A(x)`
`=> N(x) = A(x) + B(x)`
`=> N(x) = (x^2 - 8x + 23)+(-x-9)`
`= x^2 - 8x + 23 - x - 9`
`= x^2 - 9x + 14`
`A(x) - M(x) = B(x)`
`=> M(x) = A(x) - B(x)`
`=> M(x) = (x^2 - 8x + 23) - (-x - 9)`
`= x^2 - 8x + 23 + x+9`
`= x^2 - 7x +32`
a)A(x) = 3(x^2 + 2 - 4x) - 2x(x - 2) + 17
= 3x^2 + 6 - 12x - 2x^2 + 4x + 17
= x^2 - 2x + 23
b)B(x) = 3x^2 - 7x + 3 - 3(x^2 - 2x + 4)
= 3x^2 - 7x + 3 - 3x^2 + 6x - 12
= -x + -9
A(x) = x^2 - 2x + 23
B(x) = -x - 9
Hệ số cao nhất của đa thức A(x) là 1, hệ số tự do của A(x) là 23.
Hệ số cao nhất của đa thức B(x) là -1, hệ số tự do của B(x) là -9.
b)
N(x) - B(x) = A(x)
N(x) - (-x - 9) = x^2 - 2x + 23
N(x) + x + 9 = x^2 - 2x + 23
N(x) = x^2 - 3x + 14
Vậy, N(x) = x^2 - 3x + 14.
A(x) - M(x) = B(x)
x^2 - 2x + 23 - M(x) = -x - 9
x^2 - 2x + x + 9 + 23 = M(x)
x^2 - x + 32 = M(x)
Vậy, M(x) = x^2 - x + 32.
a) \(...=P\left(x\right)=2x^4-x^4+3x^3+4x^2-3x^2+3x-x+3\)
\(P\left(x\right)=x^4+3x^3+x^2+2x+3\)
\(...=Q\left(x\right)=x^4+x^3+3x^2-x^2+4x+4-2\)
\(Q\left(x\right)=x^4+x^3+2x^2+4x+2\)
b) \(P\left(x\right)+Q\left(x\right)=\left(x^4+3x^3+x^2+2x+3\right)+\left(x^4+x^3+2x^2+4x+2\right)\)
\(\Rightarrow P\left(x\right)+Q\left(x\right)=2x^4+4x^3+3x^2+6x+5\)
\(P\left(x\right)-Q\left(x\right)=\left(x^4+3x^3+x^2+2x+3\right)-\left(x^4+x^3+2x^2+4x+2\right)\)
\(\)\(\Rightarrow P\left(x\right)-Q\left(x\right)=x^4+3x^3+x^2+2x+3-x^4-x^3-2x^2-4x-2\)
\(\Rightarrow P\left(x\right)-Q\left(x\right)=2x^3-x^2-2x+1\)
a: \(A\left(x\right)=x^2-3x-3x^2+6x+17\)
\(=-2x^2+3x+17\)
\(B\left(x\right)=3x^2-7x+3-3x^2+6x-12\)
\(=-x-9\)
b: \(A\left(x\right)+B\left(x\right)=-2x^2+3x+17-x-9=-2x^2+2x+8\)
c: \(A\left(x\right)-B\left(x\right)=-2x^2+3x+17+x+9=-2x^2+4x+26\)
\(a)A\left(x\right)=5+3x^2-x-2x^2\)
\(A\left(x\right)=\left(3x^2-2x^2\right)-x+5\)
\(A\left(x\right)=x^2-x+5\)
\(B\left(x\right)=3x+3-x-x^2\)
\(B\left(x\right)=-x^2+\left(3x-x\right)+3\)
\(B\left(x\right)=-x^2+2x+3\)
\(b)C\left(x\right)=A\left(x\right)+B\left(x\right)\)
\(C\left(x\right)=\left(x^2-x+5\right)+\left(-x^2+2x+3\right)\)
\(C\left(x\right)=x^2-x+5+-x^2+2x+3\)
\(C\left(x\right)=\left(x^2-x^2\right)+\left(-x+2x\right)+\left(5+3\right)\)
\(C\left(x\right)=-x+8\)
\(c)D\left(x\right)=A\left(x\right)-B\left(x\right)\)
\(D\left(x\right)=\left(x^2-x+5\right)-\left(-x^2+2x+3\right)\)
\(D\left(x\right)=x^2-x+5+x^2-2x-3\)
\(D\left(x\right)=\left(x^2+x^2\right)+\left(-x-2x\right)+\left(5-3\right)\)
\(D\left(x\right)=2x^2-3x+2\)
a) \(A\left(x\right)=5+3x^2-x-2x^2\)
\(A\left(x\right)=5+\left(3x^2-2x^2\right)-x\)
\(A\left(x\right)=5+x^2-x\)
\(A\left(x\right)=x^2-x+5\)
\(B\left(x\right)=3x+3-x-x^2\)
\(B\left(x\right)=\left(3x-x\right)+3-x^2\)
\(B\left(x\right)=2x+3-x^2\)
\(B\left(x\right)=-x^2+2x+3\)
b) Ta có \(C\left(x\right)=A\left(x\right)+B\left(x\right)\)
\(\begin{matrix}\Rightarrow A\left(x\right)=x^2-x+5\\^+B\left(x\right)=-x^2+2x+3\\\overline{A\left(x\right)+B\left(x\right)=0+x+8}\end{matrix}\)
Vậy \(C\left(x\right)=x+8\)
c) Ta có \(D\left(x\right)=A\left(x\right)-B\left(x\right)\)
\(\begin{matrix}\Rightarrow A\left(x\right)=x^2-x+5\\^-B\left(x\right)=-x^2+2x+3\\\overline{A\left(x\right)-B\left(x\right)=2x^2-3x+2}\end{matrix}\)
Vậy \(D\left(x\right)=2x^2-3x+2\)
Ở câu b, \(A\left(x\right)+B\left(x\right)=0+x+8\) số 0 bạn bỏ rồi để khoảng trống \(A\left(x\right)+B\left(x\right)=\) \(x+8\) như vậy nha, với các dấu \(=\) ở câu b và c với cái số bạn đặt thẳng hàng nha (các từ in đậm bạn không cần ghi)
ai giúp mk đi mà . mk hứa sẽ k