Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : \(A\left(x\right)+B\left(x\right)\)
\(=2x^3+2x-3x^2+1+2x^2+3x^3-x-5\)
\(=\left(2x^3+3x^3\right)+\left(-3x^2+2x^2\right)+\left(2x-x\right)+\left(1-5\right)\)
\(=5x^3-x^2-x-4\)
b) Ta sẽ sắp xếp như sau :
\(A\left(x\right)=2x^3-3x^2+2x+1\)
\(B\left(x\right)=3x^3+2x^2-x-5\)
c) Ta có : \(A\left(x\right)-B\left(x\right)\)
\(=\left(2x^3+2x-3x^2+1\right)-\left(2x^2+3x^3-x-5\right)\)
\(=2x^3+2x-3x^2+1-2x^2-3x^3+x+5\)
\(=\left(2x^3-3x^3\right)+\left(-3x^2-2x^2\right)+\left(2x+x\right)+\left(1+5\right)\)
\(=-x^3-5x^2+3x+6\)
a) \(A\left(x\right)=-5x^3-2x^2+x+9x^3-2x^2-\left(x-1\right)\)
\(=\left(9x^3-5x^3\right)-\left(2x^2+2x^2\right)+\left(x-x\right)+1\)
\(=4x^3-4x^2+1\)
\(C\left(x\right)=x^3-2x\left(3x+1\right)-4\)
\(=x^3-6x^2-2x-4\)
b) \(A\left(x\right)+C\left(x\right)=4x^3-4x^2+1+x^3-6x^2-2x-4\)
\(=\left(4x^3+x^3\right)-\left(4x^2+6x^2\right)-2x+\left(1-4\right)\)
\(=5x^3-10x^2-2x-3\)
\(A\left(x\right)-C\left(x\right)=4x^3-4x^2+1-\left(x^3-6x^2-2x-4\right)\)
\(=4x^3-4x^2+1-x^3+6x^2+2x+4\)
\(=\left(4x^3-x^3\right)+\left(6x^2-4x^2\right)+2x+\left(1+4\right)\)
\(=3x^3+2x^2+2x+5\)
a, \(A\left(x\right)=-5x^3-2x^2+x+9x^3-2x^2-\left(x-1\right)\)
\(=4x^3-4x^2+x-x+1=4x^3-4x^2+1\)
\(C\left(x\right)=x^3-2x\left(3x+1\right)-4=x^3-6x^2-2x-4\)
b, \(A\left(x\right)+C\left(x\right)=5x^3-10x^2-2x-3\)
\(A\left(x\right)-C\left(x\right)=3x^3+2x^2+2x+5\)
a,A( x ) \(=\) 2x\(^3\) - 3x\(^2\) + 2x +1
B( x ) \(=\) 3x\(^3\) +2x\(^2\) - x - 5
b,A(x) + B(x) \(=\) 2x\(^3\) - 3x\(^2\) + 2x +1 + 3x\(^3\) +2x\(^2\) - x - 5
A(x) + B(x) \(=\) 5x\(^3\) - x\(^2\) + x - 4.
c,A(x) - B(x) \(=\) 2x\(^3\) - 3x\(^2\) + 2x +1 - 3x\(^3\) - 2x\(^2\) + x + 5
A(x) - B(x) \(=\) -x\(^3\) - 5x\(^2\) +3x +6
a) \(A\left(x\right)=2x^4-5x^3-x^4-6x^2+5+5x^2-10+x\)
\(=\left(2x^4-x^4\right)-5x^3+\left(5x^2-6x^2\right)+x+\left(5-10\right)\)
\(=3x^4-5x^3-x^2+x-5\)
\(B\left(x\right)=-7-4x+6x^4+6+3x-x^3-3x^4\)
\(=\left(6x^4-3x^4\right)-x^3+\left(3x-4x\right)+\left(6-7\right)\)
\(=x^4-x^3-x-1\)
b) \(A\left(x\right)+B\left(x\right)\)
\(=\left(3x^4-5x^3-x^2+x-5\right)+\left(x^4-x^3-x-1\right)\)
\(=5x^4-6x^3-x^2-6\)
\(A\left(x\right)-B\left(x\right)\)
\(=\left(3x^4-5x^3-x^2+x-5\right)-\left(x^4-x^3-x-1\right)\)
\(=\left(3x^4-5x^3-x^2+x-5\right)-x^4+x^3+x+1\)
\(=2x^4-4x^3-x^2+2x-4\)
Bài 1: (0,5 điểm) Cho đa thức Ax x 2x 4 4 2 . Chứng tỏ rằng Ax 0 với mọi x R .
Bài 2: (3 điểm) Cho tam giác ABC vuông tại A có AB = 5cm, BC = 10cm. a) Tính độ dài AC. b) Vẽ đường phân giác BD của ΔABC và gọi E là hình chiếu của D trên BC. Chứng minh ΔABD = ΔEBD và AE BD. c) Gọi giao điểm của hai đường thẳng ED và BA là F. Chứng minh: ΔABC = ΔAFC. d) Qua A vẽ đường thẳng song song với BC cắt CF tại G. Chứng minh ba điểm B, D, G thẳng hàng.
a) P(x) =5x3 - 5x + 9 +x
=5x3 + (-5x + x) + 9
= 5x3 - 4x + 9
Sắp xếp: tương tự như trên.
Mk đang bận chút mk làm tiếp.
a) \(A\left(x\right)=5+3x^2-x-2x^2\)
\(A\left(x\right)=5+\left(3x^2-2x^2\right)-x\)
\(A\left(x\right)=5+x^2-x\)
\(A\left(x\right)=x^2-x+5\)
\(B\left(x\right)=3x+3-x-x^2\)
\(B\left(x\right)=\left(3x-x\right)+3-x^2\)
\(B\left(x\right)=2x+3-x^2\)
\(B\left(x\right)=-x^2+2x+3\)
b) Ta có \(C\left(x\right)=A\left(x\right)+B\left(x\right)\)
\(\begin{matrix}\Rightarrow A\left(x\right)=x^2-x+5\\^+B\left(x\right)=-x^2+2x+3\\\overline{A\left(x\right)+B\left(x\right)=0+x+8}\end{matrix}\)
Vậy \(C\left(x\right)=x+8\)
c) Ta có \(D\left(x\right)=A\left(x\right)-B\left(x\right)\)
\(\begin{matrix}\Rightarrow A\left(x\right)=x^2-x+5\\^-B\left(x\right)=-x^2+2x+3\\\overline{A\left(x\right)-B\left(x\right)=2x^2-3x+2}\end{matrix}\)
Vậy \(D\left(x\right)=2x^2-3x+2\)
Ở câu b, \(A\left(x\right)+B\left(x\right)=0+x+8\) số 0 bạn bỏ rồi để khoảng trống \(A\left(x\right)+B\left(x\right)=\) \(x+8\) như vậy nha, với các dấu \(=\) ở câu b và c với cái số bạn đặt thẳng hàng nha (các từ in đậm bạn không cần ghi)