K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 7 2020

\(a+b+c=abc\Leftrightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\Rightarrow xy+yz+zx=1\)

\(VT=\frac{x^2yz}{1+yz}+\frac{xy^2z}{1+zx}+\frac{xyz^2}{1+xy}=\frac{x^2yz}{xy+yz+yz+zx}+\frac{xy^2z}{xy+zx+yz+zx}+\frac{xyz^2}{xy+yz+xy+zx}\)

\(VT\le\frac{1}{4}\left(\frac{x^2yz}{xy+yz}+\frac{x^2yz}{yz+zx}+\frac{xy^2z}{xy+zx}+\frac{xy^2z}{yz+zx}+\frac{xyz^2}{xy+yz}+\frac{xyz^2}{xy+zx}\right)\)

\(VT\le\frac{1}{4}\left(\frac{x^2y}{x+y}+\frac{xy^2}{x+y}+\frac{y^2z}{y+z}+\frac{yz^2}{y+z}+\frac{x^2z}{x+z}+\frac{xz^2}{x+z}\right)\)

\(VT\le\frac{1}{4}\left(xy+yz+zx\right)=\frac{1}{4}\)

Dấu "=" xảy ra khi \(a=b=c=\sqrt{3}\)

???? là sao vừa lớn vừa bằng đó

duyệt đi

2 tháng 7 2018

2. Áp dụng bất đẳng thức Cô - si cho 3 số dương \(\frac{a}{b},\frac{b}{c},\frac{c}{a}\)ta có

\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3\sqrt[3]{\frac{a}{b}.\frac{b}{c}.\frac{c}{a}}\)\(=3\)

Dấu "=" xảy ra <=> a = b = c

12 tháng 3 2018

Xem lại đề đi bạn ơi !

Mk nghĩ đề là : cm 1/2-a + 1/2-b + 1/2-c >= 3

Nếu nói gì sai thì thông cảm nha

AH
Akai Haruma
Giáo viên
28 tháng 6

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\([(a+\frac{1}{a})^2+(b+\frac{1}{b})^2](1^2+1^2)\geq (a+\frac{1}{a}+b+\frac{1}{b})^2=(1+\frac{1}{a}+\frac{1}{b})^2\)

\(\Rightarrow (a+\frac{1}{a})^2+(b+\frac{1}{b})^2\geq \frac{1}{2}(1+\frac{1}{a}+\frac{1}{b})^2\)

Tiếp tục áp dụng BDDT Bunhiacopxky:

$\frac{1}{a}+\frac{1}{b}\geq \frac{4}{a+b}=4$

\(\Rightarrow (a+\frac{1}{a})^2+(b+\frac{1}{b})^2\geq \frac{1}{2}(1+\frac{1}{a}+\frac{1}{b})^2\geq \frac{1}{2}(1+4)^2=12,5\)

Ta có đpcm

Dấu "=" xảy ra khi $a=b=\frac{1}{2}$

21 tháng 9 2016

Ta có 1 + ab2 \(\ge\)\(2b\sqrt{a}\)

1 + bc2 \(\ge2c\sqrt{b}\)

1 + ca2 \(\ge2a\sqrt{c}\)

VT \(\ge\)\(2\left(\frac{b\sqrt{a}}{c^3}+\frac{c\sqrt{b}}{a^3}+\frac{a\sqrt{c}}{b^3}\right)\)

\(\ge2\frac{\left(\sqrt[4]{b^2a}+\sqrt[4]{c^2b}+\sqrt[4]{a^2c}\right)^2}{a^3+b^3+c^3}\)

\(\ge2\frac{\left(3\sqrt[12]{a^3b^3c^3}\right)^2}{a^3+b^3+c^3}\)

\(\ge\frac{18}{a^3+b^3+c^3}\)