Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{97\cdot99}-\frac{5}{4}\cdot\frac{13}{99}+\frac{5}{99}\cdot\frac{1}{4}\)
\(A=\frac{1}{2}\left(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{97\cdot99}\right)-\frac{13}{4}\cdot\frac{5}{99}+\frac{5}{99}\cdot\frac{1}{4}\)
\(A=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)-\frac{5}{99}\cdot\left(\frac{13}{4}-\frac{1}{4}\right)\)
\(A=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{99}\right)-\frac{5}{99}\cdot3\)
\(A=\frac{1}{2}\cdot\frac{32}{99}-\frac{5}{33}\)
\(A=\frac{16}{99}-\frac{5}{33}=\frac{1}{99}\)
Ta có :
\(H=2^{2014}-2^{2013}-2^{2012}-...-2-1\)
\(H=2^{2014}-\left(2^{2013}+2^{2012}+2^{2011}+...+2+1\right)\)
Đặt \(B=2^{2013}+2^{2012}+2^{2011}+...+2+1\)
\(2B=2^{2014}+2^{2013}+2^{2012}+...+2^2+2\)
\(2B-B=\left(2^{2014}+2^{2013}+2^{2012}+...+2^2+2\right)-\left(2^{2013}+2^{2012}+2^{2011}+...+2+1\right)\)
\(B=2^{2014}-1\)
\(\Rightarrow\)\(H=2^{2014}-B=2^{2014}-\left(2^{2014}-1\right)=2^{2014}-2^{2014}+1=1\)
Suy ra :
\(A=2014^H=2014^1=2014\)
Vậy \(A=2014\)
Chúc bạn học tốt ~
+) Ta có :
\(A\left(-1\right)=\left(-1\right)+\left(-1\right)^2+\left(-1\right)^3+...+\left(-1\right)^{99}+\left(-1\right)^{100}\)
\(A\left(-1\right)=\left(-1\right)+1+\left(-1\right)+...+\left(-1\right)+1\)
\(A\left(-1\right)=\left(-1-1-...-1\right)+\left(1+1+...+1\right)\)
Do dãy 1; 3; 5; ... ; 99 có \(\frac{99-1}{2}+1=50\) số hạng nên có 50 số \(-1\)
Do dãy 2; 4; 6; ... ; 100 có \(\frac{100-2}{2}+1=50\) số hạng nên có 50 số \(1\)
Suy ra :
\(A\left(-1\right)=50.\left(-1\right)+50.1\)
\(A\left(-1\right)=-50+50\)
\(A\left(-1\right)=0\)
Vậy \(x=-1\) là nghiệm của đa thức \(A\left(x\right)=x+x^2+x^3+...+x^{99}+x^{100}\)
Chúc bạn học tốt ~
Bài 2)
Ta có \(\frac{a}{b}< \frac{c}{d}\)
\(\Rightarrow ad< bc\)
Xét \(\frac{a}{b}< \frac{a+c}{b+d}\)
\(\Rightarrow a\left(b+d\right)< b\left(a+c\right)\)
\(\Rightarrow ab+ad< ab+bc\)
\(\Rightarrow ad< bc\) ( thỏa mãn đề bài )
Vậy \(\frac{a}{b}< \frac{a+c}{b+d}\) (1)
Xét \(\frac{a+c}{b+d}< \frac{c}{d}\)
\(\Rightarrow d\left(a+c\right)< c\left(b+d\right)\)
\(\Rightarrow ad+cd< bc+cd\)
\(\Rightarrow ad< bc\) ( thỏa mãn đề bài )
Vậy \(\frac{a+c}{b+d}< \frac{c}{d}\) (2)
Từ (1) và (2)
\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\) (đpcm)
\(A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}}{2013+\frac{2013}{2}+\frac{2012}{3}+...+\frac{1}{2014}}\)
Đặt \(B=2013+\frac{2013}{2}+\frac{2012}{3}+...+\frac{1}{2014}\)
\(=\left(2013-2013\right)\left(\frac{2013}{2}+1\right)+...+\left(\frac{1}{2014}+1\right)\)
\(=0+\frac{2015}{2}+\frac{2015}{3}+...+\frac{2015}{2014}\)
\(=2015\cdot\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)\)
Thay B vào A ta được:
\(A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}}{2015\cdot\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}\right)}\)
\(=\frac{1}{2015}\)
Vậy \(A=\frac{1}{2015}\)
Bạn xem lại đề câu a) cho rõ lại
Câu b) Tại x=2013 thì B=x2013-(x+1)x2012+(x+1)x2011-(x+1)x2010+...-(x+1)x2+(x+1)x-1
= x2013-x2013-x2012+x2012+x2011-x2011-x2010+..-x3 - x2+x2+x-1
= x-1 = 2012
phải là so sánh A với 2 mới đúng