Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình không bày bn cách giải, nhưng sẽ gợi ý:
2 bài tương tự nhau, mẫu gấp nhau 3 lần nhé
lấy (1/3 + 1/15 +1/10 + 1/21 ) + (1/36 + 1/28 + 1/6) + (1/45 + 1/55)
= (4/50 + 3/70) + 2/100
= 7/120 + 2/100
= 9/220
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+...+\frac{1}{45}\)
\(=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+\frac{2}{30}+...+\frac{2}{90}\)
\(=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+\frac{2}{5.6}+...+\frac{2}{9.10}\)
\(=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+..+\frac{1}{9}-\frac{1}{10}\right)\)
\(=2.\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(=2.\frac{2}{5}=\frac{4}{5}\)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+...+\frac{1}{45}\)
\(=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+\frac{2}{30}+...+\frac{2}{90}\)
\(=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+\frac{2}{5.6}+...+\frac{2}{9.10}\)
\(=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(=2.\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(=\frac{4}{5}\)
A = 1/5 + 1/10 + 1/20 + 1/40 + ..... + 1/1280
A x 2 = 2/5 - ( 1 /5 + 1/10 + 1/20 + 1/40 + ... + 1/1280 ) - 1/1280
A x 2 = 2/5 - A - 1/1280
A x 2 - A = 2/5 - 1/1280
A = 2/5 - 1/1280
A = 511/1280
A = 1/5 + 1/10 + 1/20 + 1/40 + ..... + 1/1280
A x 2 = 2/5 - ( 1 /5 + 1/10 + 1/20 + 1/40 + ... + 1/1280 ) - 1/1280
A x 2 = 2/5 - A - 1/1280
A x 2 - A = 2/5 - 1/1280
A = 2/5 - 1/1280
A = 511/1280
\(\left(1+\frac{1}{2}\right)\left(1+\frac{1}{3}\right)\left(1+\frac{1}{4}\right)...\left(1+\frac{1}{99}\right)\)
\(=\frac{3}{2}\times\frac{4}{3}\times...\times\frac{100}{99}\)
\(=\frac{100}{2}=50\)
Đặt : \(A=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}+\frac{1}{10.12}\)
\(\Rightarrow2A=\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}+\frac{2}{10.12}\)
\(\Rightarrow2A=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+......+\frac{1}{10}-\frac{1}{12}\)
\(\Rightarrow2A-A=\frac{1}{2}-\frac{1}{12}\)
\(\Rightarrow A=\frac{5}{12}\)
\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2004\cdot2005}+\frac{1}{2005\cdot2006}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2004}-\frac{1}{2005}+\frac{1}{2005}-\frac{1}{2006}\)
\(A=1-\frac{1}{2006}=\frac{2005}{2006}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2005.2006}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2005}-\frac{1}{2006}\)
\(\Rightarrow A=1-\frac{1}{2006}\)
\(\Rightarrow A=\frac{2005}{2006}\)
= 2/2 + 2/6 + 2/12+...+2/90 = 2(1/2 +1/6 + 1/12 + ...+ 1/90) = 2(1/1.2 + 1/2.3 + 1/3.4 + ... + 1/9.10) = 2(1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/9 - 1/10) = 2(1 - 1/10) = 2 . 9/10 = 9/5
còn +\(\frac{1}{10}\)