Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=\frac{2\cdot4}{3^2}\cdot\frac{3.5}{4^2}\cdot\frac{4\cdot6}{5^2}\cdot......\cdot\frac{49\cdot51}{50^2}\)
=\(\frac{\left[2\cdot3\cdot4\cdot......\cdot49\right]\cdot\left[4\cdot5\cdot6\cdot.....\cdot51\right]}{\left[3\cdot4\cdot5\cdot....\cdot50\right]\cdot\left[3\cdot4\cdot5\cdot....\cdot50\right]}\)
=\(\frac{2\cdot51}{50\cdot3}\)
=\(\frac{17}{25}\)
Vì \(\frac{17}{25}\) ko phải là số nguyên nên B ko phải là số nguyên [ĐPCM]
Bạn tham khảo nhé
Ta có :
\(B=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+\frac{24}{25}+...+\frac{2499}{2500}\)
\(B=\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+\frac{4^2-1}{4^2}+\frac{5^2-1}{5^2}+...+\frac{50^2-1}{50^2}\)
\(B=\left(1-\frac{1}{2^2}\right)+\left(1-\frac{1}{3^2}\right)+\left(1-\frac{1}{4^2}\right)+\left(1-\frac{1}{5^2}\right)+...+\left(1-\frac{1}{50^2}\right)\)
\(B=\left(1+1+1+1+...+1\right)-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-\frac{1}{5^2}-...-\frac{1}{50^2}\)
\(B=49-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{50^2}\right)\)
Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{50^2}\)
\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{49.50}\)
\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{49}-\frac{1}{50}\)
\(A< 1-\frac{1}{50}\)
\(A< \frac{49}{50}\)\(\left(1\right)\)
Lại có :
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{50^2}>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{50.51}\)
\(A>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{50}-\frac{1}{51}\)
\(A>\frac{1}{2}-\frac{1}{51}=\frac{49}{102}\)\(\left(2\right)\)
Từ (1) và (2) suy ra \(\frac{49}{102}< A< \frac{49}{50}\)
\(\Leftrightarrow\)\(49-\frac{49}{102}< 49-A< 49-\frac{49}{50}\)
\(\Leftrightarrow\)\(\frac{4949}{102}< B< \frac{2401}{50}\)
\(\Rightarrow\)\(B\notinℤ\)
Vậy B không là số nguyên
\(S=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{n^2-1}{n^2}\)
\(=1-\frac{1}{2^2}+1-\frac{1}{3^2}+1-\frac{1}{4^2}+...+1-\frac{1}{n^2}\)
\(=\left(1+1+1+...+1\right)+\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)\)
\(=n+\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)< n\left(1\right)\)
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}=1-\frac{1}{2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)
...........
\(\frac{1}{n^2}< \frac{1}{\left(n-1\right)n}=\frac{1}{n-1}-\frac{1}{n}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}+\frac{1}{n}=1-\frac{1}{n}< 1\)
\(\Rightarrow-\left(\frac{1}{2^2}+\frac{1}{3^2}+....+\frac{1}{n^2}\right)>-1\)
\(\Rightarrow S=n+\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)>n+\left(-1\right)=n-1\left(2\right)\)
Từ (1) và (2) => n - 1 < S < n
Mà n - 1 và n là 2 số liên tiếp
Vậy ....
\(B=\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+...+\frac{50^2-1}{50^2}\)
\(B=1-\frac{1}{2^2}+1-\frac{1}{3^2}+...+1-\frac{1}{50^2}\)
\(B=49-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)=49-A< 49\)
Mặt khác ta có:
\(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow A< 1-\frac{1}{50}< 1\)
\(\Rightarrow B=49-A>49-1=48\)
\(\Rightarrow48< B< 49\)
\(\Rightarrow\) B nằm giữa 2 số nguyên liên tiếp nên B không phải là số nguyên
\(B=1-\frac{1}{4}+1-\frac{1}{9}+1-\frac{1}{16}+...+\frac{1}{2500}\)
\(B=1-\frac{1}{2^2}+1-\frac{1}{3^2}+1-\frac{1}{4^2}+...+\frac{1}{50^2}=\left(1+1+...+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}...+\frac{1}{50^2}\right)\)(từ 2 đến 50 có 49 số nên có 49 số 1)
\(B=49-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}...+\frac{1}{50^2}\right)<49\) (1)
Nhận xét: \(\frac{1}{2^2}<\frac{1}{1.2};\frac{1}{3^2}<\frac{1}{2.3};\frac{1}{4^2}<\frac{1}{3.4};...;\frac{1}{50^2}<\frac{1}{49.50}\)
=> \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}...+\frac{1}{50^2}<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+..+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}<1\) => \(-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}...+\frac{1}{50^2}\right)>-1\)
=> \(B=49-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}...+\frac{1}{50^2}\right)>49-1=48\)(2)
Từ (1)(2) => 48 < B < 49 => B không phải là số nguyêm
Câu hỏi của Nguyễn Thái Hà - Toán lớp 6 - Học toán với OnlineMath
Bạn tham khảo nhé!
\(S=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{n^2-1}{n^2}\)
\(=\left(1-\frac{1}{2^2}\right)+\left(1-\frac{1}{3^2}\right)+\left(1-\frac{1}{4^2}\right)+...+\left(1-\frac{1}{n^2}\right)\)
\(=\left(n-1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)< n-1\)
Ta có \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)
\(=1-\frac{1}{n}\)
\(\Rightarrow\left(n-1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)< \left(n-1\right)-\left(1-\frac{1}{n}\right)\)> n - 2
Vậy S không là số tự nhiên
\(B=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+\frac{24}{25}+........+\frac{n^2-1}{n^2}\)
\(=\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{9}\right)+\left(1-\frac{1}{16}\right)+.......+\left(1-\frac{1}{n^2}\right)\)
\(=1-\frac{1}{4}+1-\frac{1}{9}+1-\frac{1}{16}+.......+1-\frac{1}{n^2}\)
\(=\left(1+1+1+......+1\right)-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+..........+\frac{1}{n^2}\right)\)
\(=\left(n-1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.......+\frac{1}{n^2}\right)\)
Vì \(2^2=2.2>1.2\)\(\Rightarrow\frac{1}{2^2}< \frac{1}{1.2}\)
Tương tự ta có: \(\frac{1}{3^2}< \frac{1}{2.3}\); \(\frac{1}{4^2}< \frac{1}{3.4}\); .......... ; \(\frac{1}{n^2}< \frac{1}{\left(n-1\right)n}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.......+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.......+\frac{1}{\left(n-1\right)n}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.......+\frac{1}{n-1}-\frac{1}{n}\)
\(=1-\frac{1}{n}< 1\)
mà \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.........+\frac{1}{n^2}>0\)( vì các số hạng luôn > 0 )
\(\Rightarrow0< \frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+........+\frac{1}{n^2}< 1\)\(\Rightarrow\)\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.........+\frac{1}{n^2}\)không là số nguyên (1)
mà \(n\inℤ\)\(\Rightarrow n-1\inℤ\)(2)
Từ (1) và (2) \(\Rightarrow\)B không là số nguyên (đpcm)