Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chia hình vuông thành 25 hình vuông nhỏ có cạnh bằng 1cm ( nghĩa là diện tích bằng 1cm^2)
Theo nguyên lí dirichlet do có 51 điểm và 25 hình vuông
nên tồn tại một hình vuông con chứa ít nhất 3 điểm
Nên 3 điểm đỏ taoh thành 1 tma giác có diện tích nhỏ hơn 1/2 diện tích hình vuông nhỏ là 0,5 cm^2
Vậy ta có điều phải chứng minh
Gọi 20 điểm đã cho lần lượt là: \(A_1,A_2,A_3,...,A_{20}\)
Khi đó, ta có \(\frac{20.19}{2}=190\)đường thẳng nối 3 trong 20 điểm này.
ta vẽ trung trực của các đoạn trên.
lấy một điểm O không thuộc trung trực của bất kì đoạn nào. (1)
gọi khoảng cách từ 20 điểm trên đến O là\(d_1,d_2,...,d_{20}\)từ (1) nên \(d_1,d_2,...,d_{20}\)phân biệt.
không mất tính tổng quát, giả sử: \(d_1< d_2< ...< d_{20}\)
vẽ đường tròn (O,m) với \(d_1< d_2< ...< m< d_{13}< d_{14}< ...< d_{20}\)
khi đó \(\hept{\begin{cases}d_1,d_2,...,d_{12}\in\left(O\right)\\d_{13},d_{14},...,d_{20}\notin\left(O\right)\end{cases}}\)(đpcm)