K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2023

 Gọi \(2n+1\) điểm đó là \(A_1,A_2,...,A_{2n+1}\). Do số điểm là hữu hạn nên tồn tại 1 đoạn thẳng \(A_iA_j\left(i\ne j\right)\) sao cho \(A_iA_j\) lớn nhất trong các \(A_kA_l\left(k\ne l;k,l=\overline{1,2n+1}\right)\)

 TH1: Nếu \(A_iA_j\le1\), ta dựng 2 đường tròn \(\left(A_i,1cm\right)\) và \(\left(A_j,1cm\right)\). Dĩ nhiên nếu có bất kì điểm \(A_m\) nào nằm ngoài 2 đường tròn trên thì mâu thuẫn với giả thiết \(A_iA_j\) là đoạn thẳng có độ dài lớn nhất. Do đó, tất cả \(2n+1\) điểm sẽ nằm trong 2 đường tròn. Theo nguyên lí Dirichlet sẽ tồn tại 1 hình tròn chứa \(n+1\) điểm trong \(2n+1\) điểm đã cho. Đó là hình tròn cần tìm.

 TH2: Nếu \(A_iA_j>1\), ta vẫn dựng 2 đường tròn \(\left(A_i,1cm\right)\) và \(\left(A_j,1cm\right)\). Khi đó nếu có bất kì điểm \(A_m\) nào nằm ở ngoài cả 2 hình tròn thì \(A_mA_i\) và \(A_mA_j\) đều lớn hơn 1. Khi đó bộ 3 điểm \(\left(A_i,A_j,A_m\right)\) mâu thuẫn với giả thiết trong 3 điểm bất kì luôn có 2 điểm có khoảng cách nhỏ hơn 1. Do vậy, tất cả các điểm đã cho đều nằm trong 2 đường tròn kể trên. Lại theo nguyên lí Dirichlet thì tồn tại \(n+1\) điểm thuộc cùng một hình tròn. Đấy chính là hình tròn cần tìm.

 Vậy trong mọi trường hợp, ta đều tìm được 1 hình tròn bán kính 1cm chứa \(n+1\) điểm trong số \(2n+1\) điểm đã cho. Ta có đpcm.

20 tháng 5 2023

 Mình giải thích thêm trường hợp 1 nhé. Nếu như có 1 điểm \(A_m\) nằm ngoài 1 trong 2 đường tròn \(\left(A_i,1\right)\) và \(\left(A_j,1\right)\) thì 1 trong 2 đoạn \(A_mA_i\) và \(A_mA_j\) sẽ lớn hơn 1. Không mất tính tổng quát, giả sử đó là đoạn \(A_mA_i\). Khi đó \(A_mA_i>1\ge A_iA_j\), vô lí vì ta đã giả sử \(A_iA_j\) là đoạn có độ dài lớn nhất.

15 tháng 11 2023

a: Xét tứ giác BEDC có

\(\widehat{BEC}=\widehat{BDC}=90^0\)

nên BEDC là tứ giác nội tiếp

=>B,E,D,C cùng thuộc 1 đường tròn

b: Vì \(\widehat{BEC}=\widehat{BDC}=90^0\)

nên B,E,D,C cùng thuộc đường tròn đường kính BC

tâm là trung điểm I của BC

bán kính là BC/2

c: Xét ΔABC có

BD,CE là đường cao

BD cắt CE tại H

Do đó: H là trực tâm của ΔABC

=>AH\(\perp\)BC(1)

ΔABC cân tại A

mà AI là đường trung tuyến

nên AI\(\perp\)BC(2)

Từ (1),(2) suy ra A,H,I thẳng hàng

ΔABC đều

mà BD,CE là các đường cao

nên BD,CE là các đường trung tuyến

=>D,E lần lượt là trung điểm của AC,AB

Xét ΔABC có

BD,CE là các đường trung tuyến

BD cắt CE tại H

Do đó; H là trọng tâm của ΔABC

mà I là trung điểm của BC

nên \(AH=\dfrac{2}{3}AI\) và \(IH=\dfrac{1}{3}IA\)

ΔAIB vuông tại I

=>\(AB^2=AI^2+IB^2\)

=>\(AI^2=2^2-1^2=3\)

=>\(AI=\sqrt{3}\left(cm\right)\)

\(HI=\dfrac{1}{3}HA=\dfrac{1}{3}\sqrt{3}< \dfrac{1}{3}\cdot3=IB=R\)

=>H nằm trong (I)

\(IA=\sqrt{3}>1=IB=R\)

=>A nằm ngoài (I)

 

15 tháng 11 2023

Cảm ơn . Nhưng mà cho mik hỏi câu d 😅 

a: \(DH=\dfrac{12^2}{16}=9\left(cm\right)\)

AB=căn 16*25=20(cm)

=>DC=20cm

AD=căn (25^2-20^2)=15cm

=>BC=15cm

b: Vì góc BAD+góc BCD=180 độ

nên ABCD là tứ giác nội tiếp

Bán kính là AC/2=20/2=10