Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chưa ai lm thì mèo lm nha, chọn bài dễ nhất
Bài 1:
a,\(\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}\)
\(=\sqrt{3+2.\sqrt{3}.1+1}-\sqrt{3-2.\sqrt{3}.1+1}\)
\(=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(=\sqrt{3}+1-\left(\sqrt{3}-1\right)=\sqrt{3}+1-\sqrt{3}+1=2\)
b,\(\sqrt{94+42\sqrt{5}}-\sqrt{94-42\sqrt{5}}\)
\(=\sqrt{49+2.7.3\sqrt{5}+45}-\sqrt{49-2.7.3\sqrt{5}+45}\)
\(=\sqrt{\left(7+3\sqrt{5}\right)^2}-\sqrt{\left(7-3\sqrt{5}\right)^2}\)
\(=7+3\sqrt{5}-\left(7-3\sqrt{5}\right)=6\sqrt{5}\)
Bài 2: (chả biết bạn bấm máy hay làm cách nào, nhưng nếu tính tay thì mk hay làm cách này)
a,\(\sqrt{\dfrac{0,144}{10}}=\sqrt{\dfrac{144}{10000}}=\dfrac{\sqrt{144}}{\sqrt{10000}}=\dfrac{12}{100}=\dfrac{3}{25}\)
b,\(\sqrt{\dfrac{1890}{1000}}=\sqrt{\dfrac{189}{100}}=\dfrac{\sqrt{189}}{\sqrt{100}}=\dfrac{\sqrt{9.21}}{10}=\dfrac{3\sqrt{21}}{10}\)
c,\(\dfrac{\sqrt{0,225}}{\sqrt{10}}=\dfrac{\sqrt{225}}{\sqrt{10000}}=\dfrac{15}{100}=\dfrac{3}{20}\)
d,\(\dfrac{\sqrt{8a^5b}}{\sqrt{2ab}}=\sqrt{4a^4b}=2a^2\sqrt{b}\) với a,b > 0
Bài 16: Biểu thức sau đây xác định với giá trị nào của x?
a) \(\sqrt{\left(x-1\right)\left(x-3\right)}\) c) \(\sqrt{\frac{x-2}{x+3}}\)
b) \(\sqrt{x^2-4}\) d) \(\sqrt{\frac{2+x}{5-x}}\)
Bài 22: Với n là số tự nhiên, chứng minh đẳng thức:
\(\sqrt{\left(n+1\right)^2}+\sqrt{n^2}=\left(n+1\right)^2-n^2\)
Bởi vì ta có tính chất:
`a>=b>0=>1/a<=1/b`
GTLN bởi vì có dấu `<=`
a)
\(\left\{{}\begin{matrix}3x+y=7\left(1\right)\\x-2y=5\left(2\right)\end{matrix}\right.\)
lấy (1) . 2 + (2)
<=> 7x = 19 => x = \(\dfrac{19}{7}\)
thay x = \(\dfrac{19}{7}\) vào phương trình (2) ta có
\(\dfrac{19}{7}\) - 2y = 5
<=> 2y = \(\dfrac{-16}{7}\) => y = \(\dfrac{-8}{7}\)
vậy (x;y) = { ( \(\dfrac{19}{7}\);\(\dfrac{-8}{7}\) ) }
b)
\(\left\{{}\begin{matrix}3x+2y=7\left(1\right)\\2x-y=3\left(2\right)\end{matrix}\right.\)
lấy (2).2 + (1)
=> 7x = 13 => x = \(\dfrac{13}{7}\)
thay x = \(\dfrac{13}{7}\) vào phương trình 2 ta có
\(\dfrac{13}{7}\) - 2y = 5
<=> 2y = \(\dfrac{-22}{7}\) => y = \(\dfrac{-11}{7}\)
vậy (x;y) = {(\(\dfrac{13}{7}\);\(\dfrac{-11}{7}\))}
Tập hợp A là các số chính phương có 2 chữ số
\(A=\left\{16;25;36;49;64;81\right\}\)
Tập hợp B là các số chia 4 dư 1 :
\(B=\left\{25;49;81\right\}\)