Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Thay x=1; y=-1 và z=-2 vào biểu thức \(2xy\left(5x^2y+3x-z\right)\), ta được:
\(2\cdot1\cdot\left(-1\right)\cdot\left(-5+3+2\right)\)
=0
b: Thay x=1; y=-1 và z=-2 vào biểu thức \(xy^2+y^2z^3+z^3x^4\), ta được:
\(1\cdot\left(-1\right)^2+\left(-1\right)^2\cdot\left(-8\right)+\left(-8\right)\cdot1\)
\(=1-8-8=-15\)
Thay x =1; y = –1 và z = –2 vào biểu thức ta được :
xy2 + y2z3 + z3x4
= 1.(–1)2 + (–1)2(–2)3 + (–2)3.14
= 1.1 + 1. (–8) + (–8).1
= 1 + (–8) + (–8)
= –15
Vậy đa thức có giá trị bằng –15 tại x =1 ; y = –1 và z = –2 .
Thay x =1 ; y = –1 và z = –2 vào biểu thức ta được
2xy (5x2y + 3x – z)
= 2.1(–1).[5.12.( –1) + 3.1 – (–2)]
= – 2.[5.1.( –1) + 3 + 2]
= –2. (–5 + 3 + 2)
= –2.0
= 0
Vậy đa thức có giá trị bằng 0 tại x =1; y = –1 và z = –2.
a: \(A=0x^2y^4z+\dfrac{7}{2}x^2y^4z-\dfrac{2}{5}x^2y^4z=\dfrac{31}{10}x^2y^4z=\dfrac{31}{10}\cdot2^2\cdot\dfrac{1}{16}\cdot\left(-1\right)=-\dfrac{31}{40}\)
a: \(=\dfrac{7}{5}x^4z^3y=\dfrac{7}{5}\cdot2^4\cdot\left(-1\right)^3\cdot\dfrac{1}{2}=-\dfrac{56}{5}\)
b: \(=-xy^3\)
a) Thay x = 1 ; y = –1 và z = –2 vào biểu thức ta được:
2xy(5x2y + 3x – z) = 2.1(–1).[5.12.(–1) + 3.1 – (–2)]
= -2[–5 + 3 +2] = –2.0 = 0
Vậy đa thức có giá trị bằng 0 tại x = 1 ; y = –1 và z = –2.
b) Thay x = 1 ; y = –1 và z = –2 vào biểu thức ta được:
xy2 + y2z3 + z3x4 = 1.(–1)2 + (–1)2(–2)3 + (–2)3.14
= 1 + (–8) + (–8) = –15
Vậy đa thức có giá trị bằng -15 tại x = 1 ; y = –1 và z = –2.
a) Thay x = 1 ; y = –1 và z = –2 vào biểu thức ta được:
2xy(5x2y + 3x – z) = 2.1(–1).[5.12.(–1) + 3.1 – (–2)]
= -2[–5 + 3 +2] = –2.0 = 0
Vậy đa thức có giá trị bằng 0 tại x = 1 ; y = –1 và z = –2.
b) Thay x = 1 ; y = –1 và z = –2 vào biểu thức ta được:
xy2 + y2z3 + z3x4 = 1.(–1)2 + (–1)2(–2)3 + (–2)314
= 1 + (–8) + (–8) = –15
Vậy đa thức có giá trị bằng -15 tại x = 1 ; y = –1 và z = –2.
Bài 1:
|\(x\)| = 1 ⇒ \(x\) \(\in\) {-\(\dfrac{1}{3}\); \(\dfrac{1}{3}\)}
A(-1) = 2(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)) + 5
A(-1) = \(\dfrac{2}{9}\) + 1 + 5
A (-1) = \(\dfrac{56}{9}\)
A(1) = 2.(\(\dfrac{1}{3}\) )2- \(\dfrac{1}{3}\).3 + 5
A(1) = \(\dfrac{2}{9}\) - 1 + 5
A(1) = \(\dfrac{38}{9}\)
|y| = 1 ⇒ y \(\in\) {-1; 1}
⇒ (\(x;y\)) = (-\(\dfrac{1}{3}\); -1); (-\(\dfrac{1}{3}\); 1); (\(\dfrac{1}{3};-1\)); (\(\dfrac{1}{3};1\))
B(-\(\dfrac{1}{3}\);-1) = 2.(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)).(-1) + (-1)2
B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) - 1 + 1
B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\)
B(-\(\dfrac{1}{3}\); 1) = 2.(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)).1 + 12
B(-\(\dfrac{1}{3};1\)) = \(\dfrac{2}{9}\) + 1 + 1
B(-\(\dfrac{1}{3}\); 1) = \(\dfrac{20}{9}\)
B(\(\dfrac{1}{3};-1\)) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).(-1) + (-1)2
B(\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) + 1 + 1
B(\(\dfrac{1}{3}\); -1) = \(\dfrac{20}{9}\)
B(\(\dfrac{1}{3}\); 1) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).1 + (1)2
B(\(\dfrac{1}{3}\); 1) = \(\dfrac{2}{9}\) - 1 + 1
B(\(\dfrac{1}{3}\);1) = \(\dfrac{2}{9}\)