K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2016

bn lấy 1/2 nhân ra ngoài ròi tính như bình thường nha!

9 tháng 4 2016

Đặt tổng trên là A ta có

\(2A=\frac{2}{10.12}+\frac{2}{12.14}+\frac{2}{14.16}+...+\frac{2}{48.52}\)

\(2A=\frac{12-10}{10.12}+\frac{14-12}{12.14}+\frac{16-14}{14.16}+...+\frac{50-48}{48.50}\)

\(2A=\frac{1}{10}-\frac{1}{12}+\frac{1}{12}-\frac{1}{14}+\frac{1}{14}-\frac{1}{16}+...+\frac{1}{48}-\frac{1}{50}=\frac{1}{10}-\frac{1}{50}=\frac{2}{25}\)

\(\Rightarrow A=\frac{2A}{2}=\frac{1}{25}\)
 

29 tháng 4 2017

Đặt \(A=\frac{2}{10\cdot12}+\frac{2}{12\cdot14}+\frac{2}{14\cdot16}+...+\frac{2}{48\cdot50}\)

\(A=\frac{1}{10}-\frac{1}{12}+\frac{1}{12}-\frac{1}{14}+...+\frac{1}{48}-\frac{1}{50}\)

\(A=\frac{1}{10}-\frac{1}{50}=\frac{5}{50}-\frac{1}{50}=\frac{4}{50}=\frac{2}{25}\)

Vậy \(A=\frac{2}{25}\)

29 tháng 4 2017

\(\frac{1}{10}-\frac{1}{12}+\frac{1}{12}-\frac{1}{14}+...+\frac{1}{48}-\frac{1}{50}\)
=  \(\frac{1}{10}-\frac{1}{50}\)=  \(\frac{2}{25}\)

9 tháng 6 2015

S=\(\frac{2}{10.12}+\frac{2}{12.14}+\frac{2}{14.16}+.....+\frac{2}{98.100}\)

S=\(\frac{1}{10}-\frac{1}{12}+\frac{1}{12}-\frac{1}{14}+........+\frac{1}{98}-\frac{1}{100}\)

S=\(\frac{1}{10}-\frac{1}{100}\)

S=\(\frac{9}{100}\)<\(\frac{1}{10}\)

30 tháng 3 2017

tính S = cánh tính sai phân  

21 tháng 4 2018

Đặt \(A=\frac{3}{10.12}+\frac{3}{12.14}+.....+\frac{3}{48.50}\)

      \(A=\frac{3}{2}.\left(\frac{2}{10.12}+\frac{2}{12.14}+......+\frac{2}{48.50}\right)\)

      \(A=\frac{3}{2}.\left(\frac{1}{10}-\frac{1}{12}+....+\frac{1}{48}-\frac{1}{50}\right)\)

       \(A=\frac{3}{2}.\left(\frac{1}{10}-\frac{1}{50}\right)\)

      \(A=\frac{3}{2}.\frac{2}{25}\) 

     \(A=\frac{3}{25}\)

21 tháng 4 2018

cảm ơn bạn nhiều nhé !
 

19 tháng 7 2021

(1) Để \(\dfrac{2n}{n-2}\) là số nguyên thì 2n⋮n-2

2n-4+4⋮n-2

2n-4⋮n-2⇒4⋮n-2

n-2∈Ư(4)⇒Ư(4)={1;-1;2;-2;4;-4}

n∈{3;1;4;0;6;-2}

(2) \(\dfrac{3}{10.12}+\dfrac{3}{12.14}+...+\dfrac{3}{48.50}\)

=\(\dfrac{3}{2}.\left(\dfrac{2}{10.12}+\dfrac{2}{12.14}+...+\dfrac{2}{48.50}\right)\)

=\(\dfrac{3}{2}.\left(\dfrac{1}{10}-\dfrac{1}{12}+\dfrac{1}{12}-\dfrac{1}{14}+...+\dfrac{1}{48}-\dfrac{1}{50}\right)\)

=\(\dfrac{3}{2}.\left(\dfrac{1}{10}-\dfrac{1}{50}\right)\)

=\(\dfrac{3}{2}.\dfrac{2}{25}\)

=\(\dfrac{3}{25}\)

Giải:

(1) Để \(\dfrac{2n}{n-2}\) là số nguyên thì \(2n⋮n-2\) 

\(2n⋮n-2\) 

\(\Rightarrow2n-4+4⋮n-2\) 

\(\Rightarrow4⋮n-2\) 

\(\Rightarrow n-2\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\) 

n-2-4-2-1124
n-201346
Kết luậnloạit/mt/mt/mt/mt/m

Vậy \(n\in\left\{0;1;3;4;6\right\}\)

(2) \(\dfrac{3}{10.12}+\dfrac{3}{12.14}+\dfrac{3}{14.16}+...+\dfrac{3}{48.50}\) 

\(=\dfrac{3}{2}.\left(\dfrac{2}{10.12}+\dfrac{2}{12.14}+\dfrac{2}{14.16}+...+\dfrac{2}{48.50}\right)\) 

\(=\dfrac{3}{2}.\left(\dfrac{1}{10}-\dfrac{1}{12}+\dfrac{1}{12}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{16}+...+\dfrac{1}{48}-\dfrac{1}{50}\right)\) 

\(=\dfrac{3}{2}.\left(\dfrac{1}{10}-\dfrac{1}{50}\right)\) 

\(=\dfrac{3}{2}.\dfrac{2}{25}\) 

\(=\dfrac{3}{25}\) 

Chúc bạn học tốt!

17 tháng 4 2019

=3/2(2/10.12+2/12.14+...+2/48.50)

=3/2(1/10-1/12+1/12-1/14+...+1/48-1/50)

=3/2(1/10-1/50)

=3/2 . 2/25 =3/25

17 tháng 4 2019

Đặt phép tính trên là A

Ta có:

A=3/10*12+3/12*14+3/14*16+...+3/48*50

A*2/3=2/10*12+2/12*14+2/14*16+...+2/48*50

A*2/3=1/10-1/12+1/12-1/14+1/14-1/16+...+1/48-1/50

A*2/3=1/10-1/50

A*2/3=2/25

A=2/25:2/3

A=3/25

Vậy A=3/25

Nếu đúng thì k cho mình nha

18 tháng 7 2015

S=1/5.6+1/10.9+1/15.12+...+1/3350.2013

 =(1/5).(1/3).(1/1.2+1/2.3+1/3.4+...+1/670.671)

 =(1/15). (1-1/2+1/2-1/3+...+1/670-1/671)

 =(1/15). (1-1/671)

 =1/15.670/671

 =134/2013

 

19 tháng 2 2020

=>2A=2(1/2x4+1/4.6+1/6.8+1/8.10+1/10.12+1/12.14)

=> 2A=2/2.4 + 2/4.6 + 2/6.8 + 2/8.10 + 2/10.12 + 2/12.14

=> 2a =1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7

=> 2A =1-1/7

=>2A=16/17

=> A= 8/17

Mình chắc chắn . Chúc bạn học tốt

\(A=\frac{1}{2.4}\)\(+\frac{1}{4.6}\)\(+\frac{1}{6.8}\)\(+\frac{1}{8.10}\)\(+\frac{1}{10.12}\)\(+\frac{1}{12.14}\)

\(\Rightarrow2A=2.\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}+\frac{1}{10.12}+\frac{1}{12.14}\right)\)

\(\Rightarrow2A=\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}+\frac{2}{10.12}+\frac{2}{12.14}\)

\(\Rightarrow2A=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}+\frac{1}{10}-\frac{1}{12}+\frac{1}{12}-\frac{1}{14}\)

\(\Rightarrow2A=\frac{1}{2}-\frac{1}{14}=\frac{7}{14}-\frac{1}{14}=\frac{6}{14}\)

\(\Rightarrow2A=\frac{6}{14}\)

\(\Rightarrow A=\frac{3}{14}\)

13 tháng 8 2015

\(\frac{3}{4.6}+\frac{3}{6.8}+\frac{3}{8.10}+\frac{3}{10.12}+\frac{3}{12.14}\)

=\(3.\left(\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}+\frac{1}{10.12}+\frac{1}{12.14}\right)\)

=\(\frac{3}{2}.\left(\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}+\frac{2}{10.12}+\frac{2}{12.14}\right)\)

=\(\frac{3}{2}.\left(\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}+\frac{1}{10}-\frac{1}{12}+\frac{1}{12}-\frac{1}{14}\right)\)

=\(\frac{3}{2}.\left(\frac{1}{4}-\frac{1}{14}\right)\)

=\(\frac{3}{2}.\left(\frac{7}{28}-\frac{2}{28}\right)\)

=\(\frac{3}{2}.\frac{5}{28}=\frac{15}{56}\)

4 tháng 5 2020

\(\sqrt[]{\frac{ }{ }\frac{ }{ }\hept{\begin{cases}\\\end{cases}}\hept{\begin{cases}\\\\\end{cases}}\orbr{\begin{cases}\\\end{cases}}^2}\)