Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)
\(=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\)
=1
Thay x=1 vào B, ta được:
\(B=-\sqrt{1}\cdot\left(\sqrt{1}-1\right)=0\)
\(B=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}-1=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{20-2.3.2\sqrt{5}+9}}}-1=\sqrt{\sqrt{5}-\sqrt{3-\left(2\sqrt{5}-3\right)}}-1=\sqrt{\sqrt{5}-\sqrt{5-2\sqrt{5}+1}}-1=\sqrt{\sqrt{5}-\left(\sqrt{5}-1\right)}-1=0\)
Mih chỉ lm đc câu R thôi:
\(R=\sqrt{5+\sqrt{13+\sqrt{5+\sqrt{13+\sqrt{5...}}}}}\)
\(\Rightarrow R^2=5+\sqrt{13+\sqrt{5+\sqrt{13+\sqrt{5...}}}}\)
\(\Rightarrow\left(R^2-5\right)^2=13+\sqrt{5+\sqrt{13+\sqrt{5...}}}\)
\(\Rightarrow R^4-10R^2+12=R\) (Vì R là lặp lại vô hạn cách viết nên nếu mũ chẵn lên thì R vẫn là R)
\(\Rightarrow\left(R-3\right)\left(R^3+3R^2-R-4\right)=0\)
Mà \(R^3+3R^2-R-4=\left(R+3\right)\left(R-1\right)\left(R+1\right)-1>0\forall R>\sqrt{5}\)
Nên ta dễ dàng suy ra đc R-3=0 => R=3
a) \(\frac{2}{3}\sqrt{3}-\frac{1}{4}\sqrt{18}+\frac{2}{5}\sqrt{2}-\frac{1}{4}\sqrt{12}\)
\(=\frac{2}{3}\sqrt{3}-\frac{1}{4}\sqrt{2\times3^2}+\frac{2}{5}\sqrt{2}-\frac{1}{4}\sqrt{3\times2^2}\)
\(=\frac{2}{3}\sqrt{3}-\frac{3}{4}\sqrt{2}+\frac{2}{5}\sqrt{2}-\frac{1}{2}\sqrt{3}\)
\(=\frac{1}{6}\sqrt{3}-\frac{7}{20}\sqrt{2}=\frac{10\sqrt{3}-21\sqrt{2}}{60}\)
b) \(\left(\sqrt{10}+\sqrt{2}\right)\left(6-2\sqrt{5}\right)\sqrt{3+\sqrt{5}}\)
\(=\sqrt{2}\left(\sqrt{5}+1\right)\left(5-2\sqrt{5}\times1+1\right)\sqrt{3+\sqrt{5}}\)
\(=\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)^2\sqrt{6+2\sqrt{5}}\)
\(=4\left(\sqrt{5}-1\right)\sqrt{5+2\sqrt{5}\times1+1}\)
\(=4\left(\sqrt{5}-1\right)\sqrt{\left(\sqrt{5}+1\right)^2}=4\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)\)
\(=4^2=16\)
a) \(\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}\)
\(\Leftrightarrow-\left(\sqrt{3}+11\sqrt{5}+\sqrt{29}\right)\)
\(\Leftrightarrow\sqrt{637+22\sqrt{145}+2\sqrt{6\left(317+11\sqrt{145}\right)}}\)
\(\Leftrightarrow\sqrt{3}-11\sqrt{5}-\sqrt{29}\)
b) Câu hỏi của Nguyễn Trung Anh - Toán lớp 9 - Học toán với OnlineMath giống câu này!
a/ \(\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}\)
\(=\sqrt{5}-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}\)
\(=\sqrt{5}-\sqrt{6-2\sqrt{5}}\)
\(=\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=\sqrt{5}-\sqrt{5}+1=1\)
b/ Câu hỏi của Nguyễn Trung Anh - Toán lớp 9 - Học toán với OnlineMath giống câu này.
\(H=2\sqrt{27}+\sqrt{243}-6\sqrt{12}\\ =2\cdot\sqrt{9}\cdot\sqrt{3}+\sqrt{81}\cdot\sqrt{3}-6\cdot\sqrt{4}\cdot\sqrt{3}\\ =2\cdot3\cdot\sqrt{3}+9\cdot\sqrt{3}-6\cdot2\cdot\sqrt{3}\\ =6\sqrt{3}+9\sqrt{3}-12\sqrt{3}\\ =3\sqrt{3}=\sqrt{9}\cdot\sqrt{3}=\sqrt{27}\)
\(I=\sqrt{14-2\sqrt{13}}+\sqrt{14+2\sqrt{13}}\\ =\sqrt{13-2\cdot\sqrt{13}\cdot1+1}+\sqrt{13+2\cdot\sqrt{13}\cdot1+1}\\ =\sqrt{\sqrt{13}^2-2\cdot\sqrt{13}\cdot1+1^2}+\sqrt{\sqrt{13}^2+2\cdot\sqrt{13}\cdot1+1^2}\\ =\sqrt{\left(\sqrt{13}-1\right)^2}+\sqrt{\left(\sqrt{13}+1\right)^2}\\ =\left|\sqrt{13}-1\right|+\left|\sqrt{13}+1\right|\\ =\sqrt{13}-1+\sqrt{13}+1\\ =2\sqrt{13}=\sqrt{4}\cdot\sqrt{13}=\sqrt{52}\)
\(I=\sqrt{10-4\sqrt{6}}+\sqrt{10+4\sqrt{6}}\\ =\sqrt{6-2\cdot\sqrt{6}\cdot2+4}+\sqrt{6+2\cdot\sqrt{6}\cdot2+4}\\ =\sqrt{\sqrt{6}^2-2\cdot\sqrt{6}\cdot2+2^2}+\sqrt{\sqrt{6}^2+2\cdot\sqrt{6}\cdot2+2^2}\\ =\sqrt{\left(\sqrt{6}-2\right)^2}+\sqrt{\left(\sqrt{6}+2\right)^2}\\ =\left|\sqrt{6}-2\right|+\left|\sqrt{6}+2\right|\\ =\sqrt{6}-2+\sqrt{6}+2\\ =2\sqrt{6}=\sqrt{4}\cdot\sqrt{6}=\sqrt{24}\)
\(\sqrt{\sqrt{5-\sqrt{3-\sqrt{29-12\sqrt{5}}}}}=\sqrt{\sqrt{5-\sqrt{3-\sqrt{\left(2\sqrt{5}-3\right)^2}}}}\)
\(=\sqrt{\sqrt{5-\sqrt{3-\left(2\sqrt{5}-3\right)}}}=\sqrt{\sqrt{5-\sqrt{6-2\sqrt{5}}}}=\sqrt{\sqrt{5-\sqrt{\left(\sqrt{5}-1\right)^2}}}\)
\(=\sqrt{\sqrt{5-\left(\sqrt{5}-1\right)}}=\sqrt{\sqrt{6-\sqrt{5}}}\)
= 1,392869546