Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left[\left(x+1\right).\left(x+4\right)\right].\left[\left(x+2\right).\left(x+3\right)\right]-24\)
\(=\left(x^2+5x+4\right).\left(x^2+5x+6\right)-24\)
Đặt m=x2+5x+4, ta có:
\(m.\left(m+2\right)-24=m^2+2m-24=m^2+6m-4m-24\)
\(=m.\left(m+6\right)-4.\left(m+6\right)=\left(m-4\right).\left(m+6\right)\)
Tự làm tiếp :v
\(1.a\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)
\(=\left(x^2+5x+5-1\right)\left(x^2+5x+5+1\right)-24\)
\(=\left(x^2+5x+5\right)^2-1-24\)
\(=\left(x^2+5x+5\right)^2-25\)
\(=\left(x^2+5x+5+5\right)\left(x^2+5x+5-5\right)\)
\(=\left(x^2+5x+10\right)\left(x^2+5x\right)\)
\(=x\left(x+5\right)\left(x^2+5x+10\right)\)
\(b.x^4+4=x^4+4x^2+4-4x^2=\left(x^2+2\right)^2-4x^2=\left(x^2+2x+2\right)\left(x^2-2x+2\right)\)
\(2.a\) Đặt \(a=\frac{x+3}{x-2},b=\frac{x-3}{x+2}\)
Thay vào PT ta được:\(a^2+6b^2=7ab\)
\(\Leftrightarrow a^2-7ab+6b^2=0\)
\(\Leftrightarrow a^2-ab-6ab+6b^2=0\)
\(\Leftrightarrow a\left(a-b\right)-6b\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(a-6b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a-b=0\\a-6b=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=b\\a=6b\end{cases}\Leftrightarrow}\orbr{\begin{cases}\frac{x+3}{x-2}=\frac{x-3}{x+2}\\\frac{x+3}{x-2}=6.\frac{x-3}{x+2}\end{cases}\Leftrightarrow}\orbr{\begin{cases}\left(x+3\right)\left(x+2\right)=\left(x-3\right)\left(x-2\right)\\\left(x+3\right)\left(x+2\right)=\left(6x-18\right)\left(x-2\right)\end{cases}}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=1hayx=6\end{cases}}\) (bước kia dài bạn tự làm nhé)
Bài 1. x^2 \(\equiv\)8 (mod 0,1). (cmdd)
T tự: y^2 \(\equiv\)8 (mod 0,1)
=> x^2+y^2 \(\equiv\)8 (mod 0,1,2)
Mà 8z+6 \(\equiv\)8 (mod 6)
=> đpcm
Bài `1:`
`h)(3/4x-1)(5/3x+2)=0`
`=>[(3/4x-1=0),(5/3x+2=0):}=>[(x=4/3),(x=-6/5):}`
______________
Bài `2:`
`b)3x-15=2x(x-5)`
`<=>3(x-5)-2x(x-5)=0`
`<=>(x-5)(3-2x)=0<=>[(x=5),(x=3/2):}`
`d)x(x+6)-7x-42=0`
`<=>x(x+6)-7(x+6)=0`
`<=>(x+6)(x-7)=0<=>[(x=-6),(x=7):}`
`f)x^3-2x^2-(x-2)=0`
`<=>x^2(x-2)-(x-2)=0`
`<=>(x-2)(x^2-1)=0<=>[(x=2),(x^2=1<=>x=+-2):}`
`h)(3x-1)(6x+1)=(x+7)(3x-1)`
`<=>18x^2+3x-6x-1=3x^2-x+21x-7`
`<=>15x^2-23x+6=0<=>15x^2-5x-18x+6=0`
`<=>(3x-1)(5x-1)=0<=>[(x=1/3),(x=1/5):}`
`j)(2x-5)^2-(x+2)^2=0`
`<=>(2x-5-x-2)(2x-5+x+2)=0`
`<=>(x-7)(3x-3)=0<=>[(x=7),(x=1):}`
`w)x^2-x-12=0`
`<=>x^2-4x+3x-12=0`
`<=>(x-4)(x+3)=0<=>[(x=4),(x=-3):}`
`m)(1-x)(5x+3)=(3x-7)(x-1)`
`<=>(1-x)(5x+3)+(1-x)(3x-7)=0`
`<=>(1-x)(5x+3+3x-7)=0`
`<=>(1-x)(8x-4)=0<=>[(x=1),(x=1/2):}`
`p)(2x-1)^2-4=0`
`<=>(2x-1-2)(2x-1+2)=0`
`<=>(2x-3)(2x+1)=0<=>[(x=3/2),(x=-1/2):}`
`r)(2x-1)^2=49`
`<=>(2x-1-7)(2x-1+7)=0`
`<=>(2x-8)(2x+6)=0<=>[(x=4),(x=-3):}`
`t)(5x-3)^2-(4x-7)^2=0`
`<=>(5x-3-4x+7)(5x-3+4x-7)=0`
`<=>(x+4)(9x-10)=0<=>[(x=-4),(x=10/9):}`
`u)x^2-10x+16=0`
`<=>x^2-8x-2x+16=0`
`<=>(x-2)(x-8)=0<=>[(x=2),(x=8):}`
6) Ta có
\(A=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\)
\(=\frac{x^4}{xy+2xz}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}\)
\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{xy+2xz+yz+2xy+zx+2yz}\)
\(\Leftrightarrow A\ge\frac{1}{3\left(xy+yz+zx\right)}\ge\frac{1}{3\left(x^2+y^2+z^2\right)}=\frac{1}{3}\)
Bài 1 :
Gọi f( x ) = 2n2 + n - 7
g( x ) = n - 2
Cho g( x ) = 0
\(\Leftrightarrow\)n - 2 = 0
\(\Rightarrow\)n = 2
\(\Leftrightarrow\)f( 2 ) = 2 . 22 + 2 - 7
\(\Rightarrow\)f( 2 ) = 3
Để f( x ) \(⋮\)g( x )
\(\Rightarrow\)n - 2 \(\in\)Ư( 3 ) = { \(\pm\)1 ; \(\pm\)3 }
Ta lập bảng :
n - 2 | 1 | - 1 | 3 | - 3 |
n | 3 | 1 | 5 | - 1 |
Vậy : n \(\in\){ - 1 ; 1 ; 3 ; 5 }
Lời giải:
a)
\(P(x)=x^4-3x^3+5x^2-9x+6=x^3(x-1)-2x^2(x-1)+3x(x-1)-6(x-1)\)
\(=(x-1)(x^3-2x^2+3x-6)\)
\(=(x-1)[x^2(x-2)+3(x-2)]=(x-1)(x-2)(x^2+3)\)
Nếu $x\in\mathbb{N}^*$ thì $(x-1)(x-2)$ là tích 2 số nguyên liên tiếp nên $(x-1)(x-2)\vdots 2$
$\Rightarrow P(x)\vdots 2(1)$
Mặt khác:
Với $x$ chia $3$ dư $1$ thì $x-1\vdots 3$
Với $x$ chia $3$ dư $2$ thì $x-2\vdots 3$
Với $x$ chia hết cho $3$ thì $x^2+3\vdots 3$
Suy ra $P(x)\vdots 3(2)$
Từ $(1);(2)$ mà $(2,3)=1$ nên suy ra $P(x)\vdots 6$ (đpcm)
b)
\(P(x)=0\Leftrightarrow (x-1)(x-2)(x^2+3)=0\Rightarrow \left[\begin{matrix} x-1=0\\ x-2=0\\ x^2+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[\begin{matrix} x=1\\ x=2\\ x^2=-3< 0(\text{vô lý})\end{matrix}\right.\)
Vậy PT có nghiệm $x=1; x=2$