Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1a, xy+3x-7y-21=0
<=>x(y+3)-(7y+21)=0
<=>x(y+3)-7(y+3)=0
<=>(x-7)(y+3)=0
1b, xy+3x-2y=6
<=>(xy+3x)-2y-6=0
<=>x(y+3)-2(y+3)=0
<=>(x-2)(y+3)=0
bài 1
Xét tổng : (ax - by) + (ay - bx) = ax - by + ay - bx = (ax + ay) - (by + bx) = a(x + y) - b(x + y) = (a - b)(x + y) chia hết cho x + y .
Vậy (ax - by) + (ay - bx) chia hết cho x + y (1)
Mà ax - by chia hết cho x + y (2)
Từ (1) và (2) suy ra ay - bx chia hết cho x + y (đpcm)
bài 2
a)
a) Gộp thành từng nhóm bốn số, ta được 25 nhóm, mỗi nhóm bằng - 4. Do đó A = - 100. Vì thế A chia hết cho 2, chia hết cho 5, không chia hết cho 3.
b)
b, A = 2^2*5^2
A có 9 ước tự nhiên và 18 ước nguyên
bài 3 bạn tự làm nhé dài lắm mình mỏi tay rồi
CHÚC BẠN HỌC GIỎI
TK MÌNH NHÉ
a)x2(3-x)=0
\(\Rightarrow\orbr{\begin{cases}x=0\\3-x=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
b)|2x+1|<3
Vì gái trị tuyệt đối là đương
\(\Rightarrow\hept{\begin{cases}2x+1=2\\2x+1=1\\2x+1=0\end{cases}\Rightarrow}\hept{\begin{cases}2x=1\\2x=0\\2x=-1\end{cases}\Rightarrow}\hept{\begin{cases}xkoTM\\x=0\\xkoTM\end{cases}}\)
a) xy+3x-7y=21
xy+3x-7y-21=0
(xy+3x)-(7y+21)=0
x(y+3)-7(y+3)=0
(x-7)(y+3)=0
=> X-7=0 hoặc y+3=0
* Nếu x-7=0
x=7
* Nếu y+3=0
y=-3
Vậy .....
b, \(\left(x^2+2015\right).\left(x-2016\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+2015=0\\x-2016=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x^2==-2015\\x=2016\end{cases}}\)( \(x^2=-2015\)loại do \(x^2\ge0\))
Vậy x= 2016
a, \(xy+3x-7y=21\)
\(\Leftrightarrow x.\left(y+3\right)-7y-21=0\)
\(\Leftrightarrow x.\left(y+3\right)-7.\left(y+3\right)=0\)
\(\Leftrightarrow\left(y+3\right).\left(x-7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}y+3=0\\x-7\in Z\end{cases}}\\\hept{\begin{cases}x-7=0\\y+3\in Z\end{cases}}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}y=-3\\x-7\in Z\end{cases}}\\\hept{\begin{cases}x=7\\y+3\in Z\end{cases}}\end{cases}}\)\(\orbr{\begin{cases}\hept{\begin{cases}y+3=0\\x-7\in Z\end{cases}}\\\hept{\begin{cases}x-7=0\\y+3\in Z\end{cases}}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}y=-7\\x-7\in Z\end{cases}}\\\hept{\begin{cases}x=7\\y+3\in Z\end{cases}}\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}y+3=0\\x-7\in Z\end{cases}}\\\hept{\begin{cases}x-7=0\\y+3\in Z\end{cases}}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}y=-3\\x-7\in Z\end{cases}}\\\hept{\begin{cases}x=7\\y+3\in Z\end{cases}}\end{cases}}\)
a, xy + 3x - 7y = 21
=> x(y + 3) - 7y - 21 = 21 - 21
=> x(y + 3) - (7y + 21) = 0
=> x(y + 3) - 7(y + 3) = 0
=> (x - 7)(y + 3) = 0
=> \(\orbr{\begin{cases}x-7=0\\x+3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=7\\x=-3\end{cases}}}\)
Vậy x = {7;-3}
b, (x2 + 2015)(x - 2016) = 0
\(\Rightarrow\orbr{\begin{cases}x^2+2015=0\\x-2016=0\end{cases}\Rightarrow\orbr{\begin{cases}x^2=2015\left(loại\right)\\x=2016\end{cases}}}\)
Vậy x = 2016
a) x^2(3-x)=0
=> TH1 : x^2 =0 => x=0
TH2 : 3-x=0 => x= 3-0=3
Vậy x=0; x=3
b) x(x-4) <0
=> TH1 : x<0
TH2 : x-4< 0 => x<4
Vậy x< 0 thì thỏa mãn yêu cầu
bài 1
a/ta có -|x+2015|<=0
=>2016-|x+2015|<=2016-0
A>=2016 vậy GTLN của A=2016 khi x=-2015
b/
ta có |y-2017|>=0
=>|y-2017|+2016>=0+2016
A>=2016 vậy GTNN của A=2016 khi x=2017
Tìm GTNN hoặc GTLN (nếu có)
a) B = 2013 - 3 /x + 2012/
b) C = (x+3)2 - 2010
c) D = 2017-5(x-3)2
d) E = 5-x phần 7-x