Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Chỉ cần chú ý đẳng thức \(a^5+b^5=\left(a^2+b^2\right)\left(a^3+b^3\right)-a^2b^2\left(a+b\right)\) là ok!
Làm như sau: Từ \(x^2+\frac{1}{x^2}=14\Rightarrow x^2+2.x.\frac{1}{x}+\frac{1}{x^2}=16\)
\(\Rightarrow\left(x+\frac{1}{x}\right)^2=16\). Do \(x>0\Rightarrow x+\frac{1}{x}>0\Rightarrow x+\frac{1}{x}=4\)
: \(x^5+\frac{1}{x^5}=\left(x^2+\frac{1}{x^2}\right)\left(x^3+\frac{1}{x^3}\right)-\left(x+\frac{1}{x}\right)\)
\(=14\left(x^3+\frac{1}{x^3}\right)-\left(x+\frac{1}{x}\right)\)
\(=14\left(x+\frac{1}{x}\right)\left(x^2+\frac{1}{x^2}-1\right)-4\)
\(=14.4.\left(14-1\right)-4=724\) là một số nguyên (đpcm)
P/s: Lâu ko làm nên cũng ko chắc đâu nhé!
Tham khảo: Câu hỏi của Nguyễn Thị Nhàn - Toán lớp 8 - Học toán với OnlineMath
Học tốt=)
tth : mẫu nó khác bạn nhé
- mẫu nó là 2bc 2ac 2ab
mẫu mk ko có nhân 2
\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\Leftrightarrow\frac{x^2+y^2+z^2}{a^2+b^2+c^2}-\frac{x^2}{a^2}-\frac{y^2}{b^2}-\frac{z^2}{c^2}=0\)
\(\Leftrightarrow\left(\frac{x^2}{a^2+b^2+c^2}-\frac{x^2}{a^2}\right)+\left(\frac{y^2}{a^2+b^2+c^2}-\frac{y^2}{b^2}\right)+\left(\frac{z^2}{a^2+b^2+c^2}-\frac{z^2}{c^2}\right)=0\)
\(\Leftrightarrow x^2.\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{a^2}\right)+y^2.\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{b^2}\right)+z^2.\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{c^2}\right)=0\)
vì \(a,b,c\ne0\Rightarrow\hept{\begin{cases}\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{a^2}\right)\ne0\\\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{b^2}\right)\ne0\\\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{c^2}\right)\ne0\end{cases}}\Rightarrow\hept{\begin{cases}x^2=0\\y^2=0\\z^2=0\end{cases}}\Rightarrow x=y=z=0\Rightarrow P=0+\frac{11}{2011}=\frac{11}{2011}\)
a)Ta có: ab+ac+bc=-7 (ab+ac+bc)^2=49
nên
(ab)^2+(bc)^2+(ac)^2=49
nên a^4+b^4+c^4=(a^2+b^2+c^2)^2−2(ab)^2−2(ac)^2−2(bc^)2=98
b) (x^2+y^2+z^2)/(a^2+b^2+c^2)=
=x^2/a^2+y^2/b^2+z^2/c^2 <=>
x^2+y^2+z^2=x^2+(a^2/b^2)y^2+
+(a^2/c^2)z^2+(b^2/a^2)x^2+y^2+
+(b^2/c^2)z^2+(c^2/a^2)x^2+
+(c^2/b^2)y^2+z^2 <=>
[(b^2+c^2)/a^2]x^2+[(a^2+c^2)/b^2]y^2+
+[(a^2+b^2)/c^2]z^2 = 0 (*)
Đặt A=[(b^2+c^2)/a^2]x^2; B=[(a^2+c^2)/b^2]y^2;
và C=[(a^2+b^2)/c^2]z^2
Vì a,b,c khác 0 nên suy ra A,B,C đều không âm
Từ (*) ta có A+B+C=0
Tổng 3 số không âm bằng 0 thì cả 3 số đều phải bằng 0,tức A=B=C=0
Vì a,b,c khác 0 nên [(b^2+c^2)/c^2]>0 =>x^2=0 =>x=0
Tương tự B=C=0 =>y^2=z^2=0 => y=z=0
Vậy x^2011+y^2011+z^2011=0
Và x^2008+y^2008+z^2008=0.
từng bước bao gồm cả lập luân luôn
a)\(\left(1+\frac{1}{2}+...+\frac{1}{2012}\right).503x=1+\frac{2014}{2}+\frac{2015}{3}+...+\frac{4023}{2011}+\frac{4024}{2012}\) (1)
\(A=\frac{2014}{2}+\frac{2015}{3}+...+\frac{4023}{2011}+\frac{4024}{2012}\) (có 2011 số hạng)
nếu ta trừ một vào từng số hạng được tử số giống nhau
\(A-2011=\left(\frac{2014}{2}-1\right)+\left(\frac{2015}{3}-1\right)+...+\left(\frac{4023}{2011}-1\right)+\left(\frac{4024}{2012}-1\right)\)
\(A-2011=\frac{2012}{2}+\frac{2012}{3}+...+\frac{2012}{2011}+\frac{2012}{2012}=2012\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2012}\right)\)
\(A-2011+2012=2012\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2012}\right)\)công 2012 hai vế
\(A+1=VP=2012\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2012}\right)\)
\(\left(1\right)\Leftrightarrow\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2012}\right).503x=2012\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2012}\right)\left(2\right)\)
Chia cả hai vế (2) cho: \(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2011}+\frac{1}{2012}\right)\Rightarrow503x=2012\)
\(x=\frac{2012}{503}\)
mình cố tình đặt A phân ra cho bạn dẽ hiểu: Nếu ko từ vế phải =1+2011+2012(1/2+...1/2012) =2012(1+1/2+...+1/2012) luôn không dài vậy
\(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}-\frac{8x}{x^2-1}\right):\left(\frac{2x-2x^2-6}{x^2-1}-\frac{2}{x-1}\right)\)
\(A=\left(\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{8x}{\left(x+1\right)\left(x-1\right)}\right):\left(\frac{2x-2x^2-6}{\left(x-1\right)\left(x+1\right)}-\frac{2\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}\right)\)
\(A=\left(\frac{x^2+2x+1-x^2+2x-1-8x}{\left(x-1\right)\left(x+1\right)}\right):\left(\frac{2x-2x^2-6-2x-2}{\left(x+1\right)\left(x-1\right)}\right)\)
\(A=\left(\frac{4x-8x}{\left(x-1\right)\left(x+1\right)}\right).\frac{\left(x-1\right)\left(x+1\right)}{-2x^2-8}\)
..........
\(\frac{x+32}{2008}+\frac{x+31}{2009}+\frac{x+29}{2011}+\frac{x+28}{2012}+\frac{x+2056}{4}=0\) \(=0\)
\(\Leftrightarrow\)\(\frac{x+32}{2008}+1+\frac{x+31}{2009}+1+\frac{x+29}{2011}+1\)\(+\frac{x+28}{2012}+1+\frac{x+2056}{4}-4\)\(=0\)
\(\Leftrightarrow\)\(\frac{x+32}{2008}+\frac{2008}{2008}+\frac{x+31}{2009}+\frac{2009}{2009}+\)\(\frac{x+29}{2011}+\frac{2011}{2011}+\frac{x+28}{2012}+\frac{2012}{2012}+\)\(\frac{x+2056}{4}-\frac{16}{4}\)\(=0\)
\(\Leftrightarrow\)\(\frac{x+32+2008}{2008}+\frac{x+31+2009}{2009}\)\(+\frac{x+29+2011}{2011}+\frac{x+28+2012}{2012}\)\(+\frac{x+2056-16}{4}\)\(=0\)
\(\Leftrightarrow\)\(\frac{x+2040}{2008}+\frac{x+2040}{2009}+\frac{x+2040}{2011}\)\(+\frac{x+2040}{2012}+\frac{x+2040}{4}=0\)
\(\Leftrightarrow\)\(\left(x+2040\right).\left(\frac{1}{2008}+\frac{1}{2009}+\frac{1}{2011}+\frac{1}{2012}+\frac{1}{4}\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x+2040=0\\\frac{1}{2008}+\frac{1}{2009}+\frac{1}{2011}+\frac{1}{2012}+\frac{1}{4}=0\end{cases}}\)(vô lí)
\(\Leftrightarrow\)\(x=-2040\)
Vậy phương trình có nghiệm là : x = -2040