Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có: ab+ac+bc=-7 (ab+ac+bc)^2=49
nên
(ab)^2+(bc)^2+(ac)^2=49
nên a^4+b^4+c^4=(a^2+b^2+c^2)^2−2(ab)^2−2(ac)^2−2(bc^)2=98
b) (x^2+y^2+z^2)/(a^2+b^2+c^2)=
=x^2/a^2+y^2/b^2+z^2/c^2 <=>
x^2+y^2+z^2=x^2+(a^2/b^2)y^2+
+(a^2/c^2)z^2+(b^2/a^2)x^2+y^2+
+(b^2/c^2)z^2+(c^2/a^2)x^2+
+(c^2/b^2)y^2+z^2 <=>
[(b^2+c^2)/a^2]x^2+[(a^2+c^2)/b^2]y^2+
+[(a^2+b^2)/c^2]z^2 = 0 (*)
Đặt A=[(b^2+c^2)/a^2]x^2; B=[(a^2+c^2)/b^2]y^2;
và C=[(a^2+b^2)/c^2]z^2
Vì a,b,c khác 0 nên suy ra A,B,C đều không âm
Từ (*) ta có A+B+C=0
Tổng 3 số không âm bằng 0 thì cả 3 số đều phải bằng 0,tức A=B=C=0
Vì a,b,c khác 0 nên [(b^2+c^2)/c^2]>0 =>x^2=0 =>x=0
Tương tự B=C=0 =>y^2=z^2=0 => y=z=0
Vậy x^2011+y^2011+z^2011=0
Và x^2008+y^2008+z^2008=0.
a/ \(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+ac+bc\right)=0\)
\(\Rightarrow ab+ac+bc=-7\Rightarrow\left(ab+ac+bc\right)^2=49\)
\(\Rightarrow\left(ab\right)^2+\left(ac\right)^2+\left(bc\right)^2+2a^2bc+2ab^2c+2abc^2=49\)
\(\Rightarrow\left(ab\right)^2+\left(ac\right)^2+\left(bc\right)^2+2abc\left(a+b+c\right)=49\)
\(\Rightarrow\left(ab\right)^2+\left(ac\right)^2+\left(bc\right)^2=49\)
Ta có:
\(a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2\left(\left(ac\right)^2+\left(ac\right)^2+\left(bc\right)^2\right)=14^2-2.49=98\)
b/ \(\frac{x^2}{a^2}-\frac{x^2}{a^2+b^2+c^2}+\frac{y^2}{b^2}-\frac{y^2}{a^2+b^2+c^2}-\frac{z^2}{c^2}-\frac{z^2}{a^2+b^2+c^2}=0\)
\(\Leftrightarrow x^2\left(\frac{b^2+c^2}{\left(a^2+b^2+c^2\right)a^2}\right)+y^2\left(\frac{a^2+c^2}{\left(a^2+b^2+c^2\right)b^2}\right)+z^2\left(\frac{a^2+b^2}{\left(a^2+b^2+c^2\right)c^2}\right)=0\)
\(\Leftrightarrow x^2=y^2=z^2=0\) (do \(a;b;c\ne0\))
\(\Rightarrow x=y=z=0\Rightarrow P=0\)
Ta có: \(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}=1\Leftrightarrow\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\)
\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{zx}{ca}\right)=1\)
\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\cdot\frac{xyc+yza+zxb}{abc}=1\)
Mà \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\Leftrightarrow\frac{yza+zxb+xyc}{xyz}=0\)
\(\Rightarrow yza+zxb+xyc=0\)
\(\Rightarrow A=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\)
Từ giả thiết ta suy ra được:
\(\left(\frac{x^2}{a^2}-\frac{x^2}{a^2+b^2+c^2}\right)+\left(\frac{y^2}{b^2}-\frac{y^2}{a^2+b^2+c^2}\right)+\left(\frac{z^2}{c^2}-\frac{z^2}{a^2+b^2+c^2}\right)=0\)
\(\Leftrightarrow x^2\left(\frac{1}{a^2}-\frac{1}{a^2+b^2+c^2}\right)+y^2\left(\frac{1}{b^2}-\frac{1}{a^2+b^2+c^2}\right)+z^2\left(\frac{1}{c^2}-\frac{1}{a^2+b^2+c^2}\right)=0\left(1\right)\)
Vì: \(\frac{1}{a^2}-\frac{1}{a^2+b^2+c^2}>0\)
Và: \(\frac{1}{b^2}-\frac{1}{a^2+b^2+c^2}>0\)
Và: \(\frac{1}{c^2}-\frac{1}{a^2+b^2+c^2}>0\)
Từ \(\left(1\right)\Rightarrow x=y=z=0\)
Vậy từ trên ta suy ra \(x^{2005}+y^{2005}+z^{2005}=0\)
(Làm đại :D)
\(\frac{a^2}{x}+\frac{b^2}{y}=\frac{\left(a+b\right)^2}{x+y}\) C/M thế này cho ít số dễ nhìn
Quy đồng ta được
\(a^2y\left(x+y\right)+b^2x\left(x+y\right)=xy\left(a^2+2ab+b^2\right)\)
\(a^2yx+a^2y^2+b^2x^2+b^2xy=a^2xy+2abxy+b^2xy\)
rút gọn
\(a^2y^2+b^2x^2=2abxy\)
\(a^2y^2+b^2x^2-2abxy=0\) hằng đẳng thức số 2
\(\left(ay+bx\right)^2=0\)
\(ay+bx=0\Leftrightarrow ax=-bx\)
vậy \(-bx+bx=0\) đúng
\(\frac{a^2}{x}+\frac{b^2}{y}=\frac{\left(a+b\right)^2}{x+y}\Leftrightarrow\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}=\frac{\left(a+b+c\right)^2}{x+y+z}\)
Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\)\(\Rightarrow\hept{\begin{cases}x=ak\\y=bk\\z=ck\end{cases}}\)
Ta có \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}=\frac{a^2}{ak}+\frac{b^2}{bk}+\frac{c^2}{ck}=\frac{a}{k}+\frac{b}{k}+\frac{c}{k}=\frac{a+b+c}{k}\)(1)
\(\frac{\left(a+b+c\right)^2}{x+y+z}=\frac{\left(a+b+c\right)^2}{ak+bk+ck}=\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)k}=\frac{a+b+c}{k}\)(2)
Từ (1); (2) => \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}=\frac{\left(a+b+c\right)^2}{x+y+z}\)
ta có \(\frac{x^2}{a^2}\)+ \(\frac{y^2}{b^2}\)+\(\frac{z^2}{c^2}\)= \(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\)
=> ( \(\frac{x^2}{a^2}\)+ \(\frac{y^2}{b^2}\)+ \(\frac{z^2}{c^2}\))( \(a^2+b^2+c^2\))= \(x^2+y^2+z^2\)
=> \(x^2\)+ \(\frac{\left(b^2+c^2\right)x^2}{a^2}\)+ \(y^2\)+ \(\frac{\left(a^2+c^2\right)y^2}{b^2}\)+ \(z^2\)+ \(\frac{\left(a^2+b^2\right)z^2}{c^2}\)= \(x^2+y^2+z^2\)
=> \(\frac{\left(b^2+c^2\right)x^2}{a^2}\)+ \(\frac{\left(a^2+c^2\right)y^2}{b^2}\)+ \(\frac{\left(a^2+b^2\right)z^2}{c^2}\)= 0
nhận xét ...... ( tát cả đều lớn hơn hoặc = 0 nên cả tổng sẽ lớn hơn hoặc = 0)
dấu = xảy ra khi và chi khi x=y = z = 0 ( vì a,b,c khác 0)
vậy \(x^{2011}+y^{2011}+z^{2011}\)= 0 +0+0 = 0
Cô ơi em có cách khác ạ :)
\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)
\(\Leftrightarrow x^2\left(\frac{1}{a^2}-\frac{1}{a^2+b^2+c^2}\right)+y^2\left(\frac{1}{b^2}-\frac{1}{a^2+b^2+c^2}\right)+z^2\left(\frac{1}{c^2}-\frac{1}{a^2+b^2+c^2}\right)=0\)
Dấu "=" xảy ra tại x=y=z=0
Khi đó T=0
Ta có:
\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)
<=> \(\left(a^2+b^2+c^2\right)\)\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\left(a^2+b^2+c^2\right)\left(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\right)\)
<=> \(x^2+y^2+z^2=\left(a^2+b^2+c^2\right)\frac{x^2}{a^2}+\left(a^2+b^2+c^2\right)\frac{y^2}{b^2}+\left(a^2+b^2+c^2\right)\frac{z^2}{c^2}\)
<=> \(\frac{\left(b^2+c^2\right)}{a^2}x^2+\frac{\left(a^2+c^2\right)}{b^2}y^2+\frac{\left(a^2+b^2\right)}{c^2}z^2=0\)
vì a, b , c khác 0 nên \(\frac{\left(b^2+c^2\right)}{a^2};\frac{\left(c^2+a^2\right)}{b^2};\frac{\left(b^2+a^2\right)}{c^2}\ne0\)
\(\frac{\left(b^2+c^2\right)}{a^2}x^2\ge0;\frac{\left(a^2+c^2\right)}{b^2}y^2\ge0;\frac{\left(a^2+b^2\right)}{c^2}z^2\ge0\)với mọi x, y, z
=> \(\frac{\left(b^2+c^2\right)}{a^2}x^2+\frac{\left(a^2+c^2\right)}{b^2}y^2+\frac{\left(a^2+b^2\right)}{c^2}z^2\ge0\)với mọi x; y; z
Do đó: \(\frac{\left(b^2+c^2\right)}{a^2}x^2+\frac{\left(a^2+c^2\right)}{b^2}y^2+\frac{\left(a^2+b^2\right)}{c^2}z^2=0\)
=> x = y = z = 0
Vậy T = 0
\(\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\Leftrightarrow\frac{x^2+y^2+z^2}{a^2+b^2+c^2}-\frac{x^2}{a^2}-\frac{y^2}{b^2}-\frac{z^2}{c^2}=0\)
\(\Leftrightarrow\left(\frac{x^2}{a^2+b^2+c^2}-\frac{x^2}{a^2}\right)+\left(\frac{y^2}{a^2+b^2+c^2}-\frac{y^2}{b^2}\right)+\left(\frac{z^2}{a^2+b^2+c^2}-\frac{z^2}{c^2}\right)=0\)
\(\Leftrightarrow x^2.\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{a^2}\right)+y^2.\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{b^2}\right)+z^2.\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{c^2}\right)=0\)
vì \(a,b,c\ne0\Rightarrow\hept{\begin{cases}\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{a^2}\right)\ne0\\\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{b^2}\right)\ne0\\\left(\frac{1}{a^2+b^2+c^2}-\frac{1}{c^2}\right)\ne0\end{cases}}\Rightarrow\hept{\begin{cases}x^2=0\\y^2=0\\z^2=0\end{cases}}\Rightarrow x=y=z=0\Rightarrow P=0+\frac{11}{2011}=\frac{11}{2011}\)