K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2019

Xí bài 2 :

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

a) Khi đó : \(\frac{a-b}{b}=\frac{bk-b}{b}=\frac{b\left(k-1\right)}{b}=k-1\)

\(\frac{c-d}{d}=\frac{dk-d}{d}=\frac{d\left(k-1\right)}{d}=k-1\)

Ta có đpcm

b) \(\frac{a\cdot b}{c\cdot d}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)

\(\Leftrightarrow\frac{bk\cdot b}{dk\cdot d}=\frac{\left(bk+b\right)^2}{\left(dk+d\right)^2}\)

\(\Leftrightarrow\frac{b^2}{d^2}=\frac{b^2\cdot\left(k+1\right)^2}{d^2\cdot\left(k+1\right)^2}\)

\(\Leftrightarrow\frac{b^2}{d^2}=\frac{b^2}{d^2}\)( luôn đúng )

Ta có đpcm

1 tháng 7 2019

Bài 2 ez nhất,để mình!

a) Ta có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}-1=\frac{c}{d}-1\Leftrightarrow\frac{a-b}{b}=\frac{c-d}{d}^{\left(đpcm\right)}\)

b) Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=kb;c=kd\)

Thay vào suy ra \(VP=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{\left[b\left(k+1\right)\right]^2}{\left[d\left(k+1\right)\right]^2}=\frac{b^2}{d^2}\) (1)

Mặt khác \(VT=\frac{ab}{cd}=\frac{kb^2}{kd^2}=\frac{b^2}{d^2}\)(2)

Từ (1) và (2) ta có đpcm

Bài 1: Tìm x, y, z thõa mãn các điều kiện sau:\(\frac{5z-6y}{4}=\frac{6x-4z}{5}=\frac{4y-5z}{6}\) và\(3x-2y+5z=96\)Bài 2: Tìm x, y, z thão mãn:a. \(2x=3y=7z\) và  \(x+y+z-13=0\)b. \(\left(x+y\right):\left(5-z\right):\left(y+z\right):\left(7+y\right)=3:1:2:5\)c. \(\frac{x}{y+z-2}=\frac{y}{x+z+1}=\frac{z}{x+y+1}=x+y+z\)d. \(\frac{x-2003}{2}=\frac{y-2004}{6}=\frac{z-2009}{8}\) và \(x+2y-z=4009\)e. \(\frac{x^2}{9}=\frac{y^2}{25}\) và  \(x\cdot...
Đọc tiếp

Bài 1: Tìm x, y, z thõa mãn các điều kiện sau:
\(\frac{5z-6y}{4}=\frac{6x-4z}{5}=\frac{4y-5z}{6}\) và\(3x-2y+5z=96\)

Bài 2: Tìm x, y, z thão mãn:

a. \(2x=3y=7z\) và  \(x+y+z-13=0\)

b. \(\left(x+y\right):\left(5-z\right):\left(y+z\right):\left(7+y\right)=3:1:2:5\)

c. \(\frac{x}{y+z-2}=\frac{y}{x+z+1}=\frac{z}{x+y+1}=x+y+z\)

d. \(\frac{x-2003}{2}=\frac{y-2004}{6}=\frac{z-2009}{8}\) và \(x+2y-z=4009\)

e. \(\frac{x^2}{9}=\frac{y^2}{25}\) và  \(x\cdot y=15\)

f. \(\frac{x^2-y^2}{3}=\frac{y^2+x^2}{-5}=x^{10}\cdot y^{10}=1024\)

g. \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\) và \(x^2+y^2+z^2=14\)

h. \(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}\)

i. \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\) và \(x\cdot y+y\cdot z+x\cdot z=31\)

k. \(7x=3y:5y=7z\)  và \(x\cdot y+x\cdot z-y\cdot z=4\)

 Bìa 3: Tính 

\(Cho \frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)
Tính

\(a. A=\frac{5x+3y}{5y-4z}\)

\(b. B=\frac{x+2y-3z}{3y+2z-5x}\)

\(c. C=\frac{2y-3z}{x+y+z}\)

Bài 4: 

\(Cho \frac{a}{b}=\frac{b}{c}=\frac{c}{a}\) với \(a+b+c\ne0\) và \(a=2011\)
Tính b và 3b-4c

0
Bài 1Cho \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\left(b\ne0\right)\)Chững minh c=0Bài 2Cho tỉ lệ thức \(\frac{a+b}{b+c}=\frac{c+d}{d+a}\)Chững minh a + b+ c+ d = 0Bài 3Cho \(\frac{cx-az}{b}=\frac{ay-bx}{c}=\frac{bz-cy}{a}\)Chững mình rằng \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)Bài 4Cho a + b = c + d và \(a^2+b^2+c^2=c^2+d^2\left(a,b,c,d\ne0\right)\)Chững minh rằng 4 số a,b, c, d lập thành 1 tỉ lệ thứcBài...
Đọc tiếp

Bài 1
Cho \(\frac{a+b+c}{a+b-c}=\frac{a-b+c}{a-b-c}\left(b\ne0\right)\)
Chững minh c=0

Bài 2

Cho tỉ lệ thức \(\frac{a+b}{b+c}=\frac{c+d}{d+a}\)

Chững minh a + b+ c+ d = 0

Bài 3

Cho \(\frac{cx-az}{b}=\frac{ay-bx}{c}=\frac{bz-cy}{a}\)

Chững mình rằng \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)

Bài 4

Cho a + b = c + d và \(a^2+b^2+c^2=c^2+d^2\left(a,b,c,d\ne0\right)\)

Chững minh rằng 4 số a,b, c, d lập thành 1 tỉ lệ thức

Bài 5

Cho \(\left(x1P-y1Q\right)^{2n}+\left(x2P+y2Q\right)^{2m}+...+\left(xkP-ykQ\right)^{2k}\le0\left(n,m,...,k\inℕ^∗;P,Q\ne0\right)\)

Chứng minh rằng \(\frac{x1+x2+x3+...+xk}{y1+y2+y3+...+yk}\)

Bài 6

Biết rằng \(\hept{\begin{cases}a1^2+a2^2+a3^2=P^2\\b1^2+b2^2+b3^2=Q^2\end{cases}}\) và \(a1\cdot b1+a2\cdot b2+a3\cdot b3=P\cdot Q\)

Chứng minh \(\frac{a1}{b1}=\frac{a2}{b2}=\frac{a3}{b3}=\frac{P}{Q}\)

Bài 7

Cho 4 số a, b, c, d khác 0 thảo mãn \(\left(ad+bc\right)^2=4abcd\)

Chững minh rằng 4 số a, b, c ,d có thê rlaapj thành 1 tỉ lệ thức

Bài 8

Cho các số a, b, c thảo mãn \(\frac{a}{2010}=\frac{b}{2011}=\frac{c}{2012}\)

a. Tính \(M=\frac{2a-3b+c}{2c-3b}\)

b. Chứng minh rằng \(a\cdot\left(a-b\right)\cdot\left(b-c\right)=\left(a-c\right)^2\)

0
26 tháng 8 2016

khocroiThế câu một các cậu làm được chưa

 

17 tháng 10 2019

\(^{2^{25}}\) là \(2^{25}\) mé các bạn, mình sợ mọi người nhầm

17 tháng 10 2019

Đợi tí nha bạn Phạm Mai Linh

27 tháng 9 2018

lam sao bạn viết chữ to như 3/4 . ( x + 1/2 ) vậy

Câu1) tìm các số x,y,z biết:a) \(\frac{x}{2}=\frac{y}{3}=\frac{c}{4}\) và \(x+2\cdot y-3c=-20\)                                         b) Tìm 3 số x,y,z biết \(\frac{x}{2}=\frac{y}{5}\) và \(x\cdot y=360\)                                           c) \(P=\frac{x+2\cdot y-3\cdot z}{x-2\cdot y+3\cdot z}\) Tính giá trị P biết các số x,y,z tỉ lệ với 5;4;3câu 2) Tìm các số nguyên x để giá trị của biểu thức sau là số nguyên :             ...
Đọc tiếp

Câu1) tìm các số x,y,z biết:a) \(\frac{x}{2}=\frac{y}{3}=\frac{c}{4}\) và \(x+2\cdot y-3c=-20\)

                                         b) Tìm 3 số x,y,z biết \(\frac{x}{2}=\frac{y}{5}\) và \(x\cdot y=360\)

                                           c) \(P=\frac{x+2\cdot y-3\cdot z}{x-2\cdot y+3\cdot z}\) Tính giá trị P biết các số x,y,z tỉ lệ với 5;4;3

câu 2) Tìm các số nguyên x để giá trị của biểu thức sau là số nguyên :

               a) \(A=\frac{x-2}{3}\)      b) \(B=\frac{5}{x+3}\)      c) \(C=\frac{x+1}{x-2}\)

câu 3) Tìm x biết : \(\left(3\cdot x-7\right)^{2009}\)\(\left(3\cdot x-7\right)^{2007}\)

câu 4) Tìm GTNN của biểu thức:

      \(M=\left|x+\frac{2}{3}\right|+2\)                              \(N=\left(X-\frac{2}{7}\right)^{2008}\)\(\left(0.2-\frac{1}{5}\cdot Y\right)^{2010}\)\(\left(-1\right)^{200}\)

CÂU 5) CMR : \(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+............+\frac{1}{3^{99}}< \frac{1}{2}\)

                  MÌNH RẤT MONG ĐƯỢC CÁC BẠN GIÚP ĐỠ . CÁC BẠN NHỚ TRUNHF BÀY RÕ RÀNG NHÉ . THANK

 

0