Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi UCLN (3n + 2 ; 2n + 1 ) là d
suy ra 3n + 2 chia hết cho d ; 2n + 1 chia hết cho d
Do đó 2.(3n + 2 ) - 3.(2n + 1 ) chia hết cho d
suy ra 1 chia hết cho d
suy ra d = 1
a, Gọi d là ƯCLN(2n+2;2n)
=> 2 n + 2 ⋮ d 2 n ⋮ d ⇒ 2 n + 2 - 2 n = 2 ⋮ d
Mà d là ƯCLN nên d là số lớn nhất và cũng là ước của 2.
Vậy d = 2
b, Gọi ƯCLN(3n+2 ;2n+1) = d
Ta có: 3 n + 2 ⋮ d 2 n + 1 ⋮ d ⇒ 2 3 n + 2 ⋮ d 3 2 n + 1 ⋮ d
=>[2(3n+2) – 3(2n+1)] = 1 ⋮ d
Vậy d = 1
Gọi d là ƯCLN( n+2 ;3n+1)
=>n +2 chia hết cho d và 3n+1 chia hết cho d
=> 3n+6 chia hết cho d và 3n + 1 chia hết cho d
=> 5 chia hết cho d
=> d thuộc Ư(5) =(1;5)
Vậy ƯC ( n+2;3n+1) =(1;5)
Chứng tỏ nó bằng 1?!
Bg
Ta có: ƯCLN (3n + 2; 2n + 1) (n \(\inℕ\))
Gọi ƯCLN (3n + 2; 2n + 1) là d (d \(\inℕ^∗\))
Theo đề bài: 3n + 2 \(⋮\)d và 2n + 1 \(⋮\)d
=> 2.(3n + 2) - 3.(2n + 1) \(⋮\)d
=> 6n + 4 - (6n + 3) \(⋮\)d
=> 6n + 4 - 6n - 3 \(⋮\)d
=> (6n - 6n) + (4 - 3) \(⋮\)d
=> 1 \(⋮\)d
=> d = 1
Vậy ƯCLN (3n + 2; 2n + 1) = 1
Gọi d là ƯC(n+1,3n+4).(d thuộc N*).Ta có:
(n+1) chia hết cho d
(3n+4) chia hết cho d
=> 3.(n+1) chia hết cho d
(3n+4) chia hết cho d
=> (3n+3) chia hết cho d
(3n+4) chia hết cho d
=>[(3n+4) - (3n+3)] chia hết cho d
=> 1 chia hết cho d=> d=1
Vây ƯC(n+1; 3n+4)=1
làm ơn tích mk với