K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2017
10026
1 tháng 11 2017

1,

\(\frac{2n+2}{2n}\)\(\frac{2(n+1)}{2n}\)=\(\frac{n+1}{n}\)

=> \(\frac{2n+2}{n+1}\)= 2

=> ƯCLN(2n+2: 2n) = 2

27 tháng 2 2019

16 tháng 11 2017

ƯCLN của (3n+2;2n+1) là 1

k mk

16 tháng 11 2017

Gọi   UCLN (3n + 2 ; 2n + 1 ) là d

suy ra 3n + 2 chia hết cho d ; 2n + 1 chia hết cho d

Do đó 2.(3n + 2 ) - 3.(2n + 1 ) chia hết cho d

suy ra 1 chia hết cho d 

suy ra d = 1 

10 tháng 2 2017

a, Gọi d là ƯCLN(2n+2;2n)

=> 2 n + 2 ⋮ d 2 n ⋮ d ⇒ 2 n + 2 - 2 n = 2 ⋮ d

Mà d là ƯCLN nên d là số lớn nhất và cũng là ước của 2.

Vậy d = 2

b, Gọi ƯCLN(3n+2 ;2n+1) = d

Ta có:  3 n + 2 ⋮ d 2 n + 1 ⋮ d ⇒ 2 3 n + 2 ⋮ d 3 2 n + 1 ⋮ d

=>[2(3n+2) – 3(2n+1)] = 1 ⋮ d

Vậy d = 1

Gọi d là ƯCLN( n+2 ;3n+1)

=>n +2 chia hết cho d và 3n+1 chia hết cho d

=> 3n+6 chia hết cho d và 3n + 1 chia hết cho d 

=> 5 chia hết cho d 

=> d thuộc Ư(5) =(1;5) 

Vậy ƯC ( n+2;3n+1) =(1;5)

 

13 tháng 12 2020

Chứng tỏ nó bằng 1?!

Bg

Ta có: ƯCLN (3n + 2; 2n + 1)  (n \(\inℕ\))

Gọi ƯCLN (3n + 2; 2n + 1) là d  (d \(\inℕ^∗\))

Theo đề bài: 3n + 2 \(⋮\)d và 2n + 1 \(⋮\)d

=> 2.(3n + 2) - 3.(2n + 1) \(⋮\)d

=> 6n + 4 - (6n + 3) \(⋮\)d

=> 6n + 4 - 6n - 3 \(⋮\)d

=> (6n - 6n) + (4 - 3) \(⋮\)d

=> 1 \(⋮\)d

=> d = 1

Vậy ƯCLN (3n + 2; 2n + 1) = 1

13 tháng 12 2020

Bang 1

12 tháng 11 2018

Gọi d là ƯC(n+1,3n+4).(d thuộc N*).Ta có:

(n+1) chia hết cho d

(3n+4) chia hết cho d

=> 3.(n+1) chia hết cho d

     (3n+4) chia hết cho d

=> (3n+3) chia hết cho d

     (3n+4) chia hết cho d

=>[(3n+4) - (3n+3)] chia hết cho d

=> 1 chia hết cho d=> d=1

Vây ƯC(n+1; 3n+4)=1

làm ơn tích mk với