Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A=2m(n-p)-(n-p)(m+p)
=(2m-m-p)(n-q)
=(m-p)(n-q)
thay m=18,3; n=24,6; p=10,6; q=-31,7 vào biểu thức trên ta có
A=(18,3-10,6)(24,6+31,7)
=7,7.56,3
=433,51
b) B=(a-b)(b+c)+b(b-a)
=(a-b)(b+c)-b(a-b)
=(a-b)(b+c-b)
=(a-b)c
thay a=0,68;b=0,26;c=1,5 vào biểu thức ta có
B=(2-1,007)(-0,006)
=0.993.(-0,006)
=-0,005958
a)\(A=x\left(y-z\right)+2\left(z-y\right)\)
\(=2\left(z-y\right)-x\left(z-y\right)\)
\(=\left(2-x\right)\left(z-y\right)\) với \(x=2;y=1,007;z=-0,006\) thì
\(A=\left(2-2\right)\left(-0,006-1,007\right)=0\)
b)\(B=2x\left(y-z\right)+\left(z-y\right)\left(x+m\right)\)
\(=\left(z-y\right)\left(x+m\right)-2x\left(z-y\right)\)
\(=\left(z-y\right)\left(x+m-2x\right)\)
\(=\left(z-y\right)\left(m-x\right)\) với \(x=18,3;y=24,6;z=10,6;m=-31,7\) thì
\(B=\left(10,6-24,6\right)\left(-31,7-18,3\right)=700\)
a) A = x(y - z) + 2(z - y) = x(y - z) - 2(y - z) = (x - 2)(y - z) = (2 - 2)(1,007 - (-0,006)] = 0
b) B = 2x(y - z) + (z - y)(x + t) = 2x(y - z) - (y - z)(x + t) = (2x - x - t)(y - z) = (x - t)(y - z) = [18,3 - (-31,7)](24,6 - 10,6) = 50.14 = 700
c) C = (x - y)(y + z) + y(y - x) = (x - y)(y + z) - y(x - y) = (x - y)(y + z - y) = (x - y).z = (0,86 - 0,26).1,5 = 0,6.1,5 = 0,9
Giải:
a) \(B=2x\left(y-z\right)+\left(z-y\right)\left(x+m\right)\)
\(\Leftrightarrow B=\left(z-y\right)\left(x+m\right)-2x\left(z-y\right)\)
\(\Leftrightarrow B=\left(z-y\right)\left(x+m-2x\right)\)
\(\Leftrightarrow B=\left(z-y\right)\left(m-x\right)\)
Thay các giá trị của biến vào, ta được:
\(B=\left(10,6-24,6\right)\left(-31,7-18,3\right)\)
\(\Leftrightarrow B=\left(-14\right)\left(-50\right)=700\)
b) \(C=\left(x-y\right)\left(y+z\right)+y\left(y-x\right)\)
\(\Leftrightarrow C=\left(x-y\right)\left(y+z\right)-y\left(x-y\right)\)
\(\Leftrightarrow C=\left(x-y\right)\left(y+z-y\right)\)
\(\Leftrightarrow C=\left(x-y\right)z\)
Thay các giá trị của biến vào, ta được:
\(C=\left(0,86-0,26\right).1,5\)
\(\Leftrightarrow C=1,12.1,5=1,68\)
Vậy ...
A=xy-xz+2z-2y
B=2xy-2xz+22- yt2
C=xy-2yz+y2
bạn tự tính kết quả nha
a: \(A=\left(y-z\right)\left(x-2\right)\)
\(=\left(2-2\right)\cdot\left(1.007-0.06\right)=0\)
b: \(B=2\cdot18.3\cdot\left(24.6-10.6\right)+\left(2-24.6\right)\left(2+31.7\right)\)
\(=36.6\cdot14-761.62=-249.22\)
c: \(C=\left(x-y\right)\left(y+z\right)-y\left(x-y\right)\)
\(=\left(0.86-0.26\right)\left(0.26+1.5\right)-0.26\left(0.86-0.26\right)\)
\(=0.6\cdot1.5=0.9\)
Ta thấy \(11^m\) tận cùng bằng 1, còn \(5^n\) tận cùng bằng 5. Nếu \(11^m>5^n\) thì A tận cùng bằng 6, nếu \(11^m< 5^n\) thì A tận cùng bằng 4.
Ta chỉ ra trường hợp A = 4 : với m = 2, n = 3 thì A = |121-125| = 4
Như vậy min A = 4 khi chẳng hạn m = 2, n = 3
bài 1:
a) 4n+4+3n-6<19
<=> 7n-2<19
<=> 7n<21 <=> n< 3
b) n\(^2\) - 6n + 9 - n\(^2\) + 16\(\leq\)43
-6n+25\(\leq\)43
-6n\(\leq\)18
n\(\geq\)-3