K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2017

a)\(A=x\left(y-z\right)+2\left(z-y\right)\)

\(=2\left(z-y\right)-x\left(z-y\right)\)

\(=\left(2-x\right)\left(z-y\right)\) với \(x=2;y=1,007;z=-0,006\) thì

\(A=\left(2-2\right)\left(-0,006-1,007\right)=0\)

b)\(B=2x\left(y-z\right)+\left(z-y\right)\left(x+m\right)\)

\(=\left(z-y\right)\left(x+m\right)-2x\left(z-y\right)\)

\(=\left(z-y\right)\left(x+m-2x\right)\)

\(=\left(z-y\right)\left(m-x\right)\) với \(x=18,3;y=24,6;z=10,6;m=-31,7\) thì

\(B=\left(10,6-24,6\right)\left(-31,7-18,3\right)=700\)

12 tháng 6 2018

Giải:

a) \(B=2x\left(y-z\right)+\left(z-y\right)\left(x+m\right)\)

\(\Leftrightarrow B=\left(z-y\right)\left(x+m\right)-2x\left(z-y\right)\)

\(\Leftrightarrow B=\left(z-y\right)\left(x+m-2x\right)\)

\(\Leftrightarrow B=\left(z-y\right)\left(m-x\right)\)

Thay các giá trị của biến vào, ta được:

\(B=\left(10,6-24,6\right)\left(-31,7-18,3\right)\)

\(\Leftrightarrow B=\left(-14\right)\left(-50\right)=700\)

b) \(C=\left(x-y\right)\left(y+z\right)+y\left(y-x\right)\)

\(\Leftrightarrow C=\left(x-y\right)\left(y+z\right)-y\left(x-y\right)\)

\(\Leftrightarrow C=\left(x-y\right)\left(y+z-y\right)\)

\(\Leftrightarrow C=\left(x-y\right)z\)

Thay các giá trị của biến vào, ta được:

\(C=\left(0,86-0,26\right).1,5\)

\(\Leftrightarrow C=1,12.1,5=1,68\)

Vậy ...

4 tháng 10 2019

a) A = x(y - z) + 2(z - y) = x(y - z) - 2(y - z) = (x - 2)(y - z) = (2 - 2)(1,007 - (-0,006)] = 0

b) B = 2x(y - z) + (z - y)(x + t) = 2x(y - z)  - (y - z)(x + t) = (2x - x - t)(y - z) = (x - t)(y - z) = [18,3 - (-31,7)](24,6 - 10,6) = 50.14 = 700

c) C = (x - y)(y + z) + y(y - x) = (x - y)(y + z) - y(x - y) = (x - y)(y + z - y) = (x - y).z = (0,86 - 0,26).1,5 = 0,6.1,5 = 0,9

28 tháng 7 2018

A=xy-xz+2z-2y

B=2xy-2xz+22- yt2

C=xy-2yz+y2

bạn tự tính kết quả nha

a: \(A=\left(y-z\right)\left(x-2\right)\)

\(=\left(2-2\right)\cdot\left(1.007-0.06\right)=0\)

b: \(B=2\cdot18.3\cdot\left(24.6-10.6\right)+\left(2-24.6\right)\left(2+31.7\right)\)

\(=36.6\cdot14-761.62=-249.22\)

c: \(C=\left(x-y\right)\left(y+z\right)-y\left(x-y\right)\)

\(=\left(0.86-0.26\right)\left(0.26+1.5\right)-0.26\left(0.86-0.26\right)\)

\(=0.6\cdot1.5=0.9\)

9 tháng 8 2020

Bài làm:

Sửa đề:

Ta có: \(B=2x\left(y-z\right)+\left(z-y\right)\left(x+y\right)\)

\(B=2x\left(y-z\right)-\left(y-z\right)\left(x+y\right)\)

\(B=\left(y-z\right)\left(2x-x-y\right)\)

\(B=\left(x-y\right)\left(y-z\right)\)

Với x=18 ; y=24 ; z=10 ta được:

\(B=\left(18-24\right)\left(24-10\right)\)

\(B=\left(-6\right).14=-84\)

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^32, a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 03, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:a, (x + y+ z)^2 = 3(xy + yz + zx)b, (x + y)(y + z)(z + x) = 8xyzc, (x - y)^2 +...
Đọc tiếp

1, Phân tích thành nhân tử: 8(x + y + z)^2 - (x + y)^3 - (y + z)^3 - (z + x)^3
2, 
a, Phân tích thành nhân tử: 2x^2y^2 + 2y^2z^2 + 2z^2x^2 - x^4 - y^4 - z^4
b, Chứng minh rằng nếu x, y, x là ba cạnh của 1 tam giác thì A > 0
3, Cho x, y, x là độ dài 3 cạnh của một tam giác ABC. Chứng minh rằng nếu x, y, z thỏa mãn các đẳng thức sau thì tam giác ABC là tam giác đều:
a, (x + y+ z)^2 = 3(xy + yz + zx)
b, (x + y)(y + z)(z + x) = 8xyz
c, (x - y)^2 + (y - z)^2 + (z - x)^2 = (x + y - 2z)^2 + (y + z - 2x)^2 + (z + x - 2y)^2
d, (1 + x/z)(1 + z/y)(1 + y/x) = 8
4,
a, Cho 3 số a, b, c thỏa mãn b < c; abc < 0; a + c = 0. Hãy so sánh (a + b - c)(b + c - a)(c + a -b) và (c - b)(b - a)(a - c)
b, Cho x, y, z, t là các số nguyên dương thỏa mãn x + z = y + t; xz 1 = yt. Chứng minh y = t và x, y, z là 3 số nguyên liên tiếp

5, Chứng minh rằng mọi x, y, z thuộc Z thì giá trị của các đa thức sau là 1 số chính phương
a, A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4
b, B = (xy + yz + zx)^2 + (x + y + z)^2 . (x^2 + y^2 + z^2)

4
16 tháng 8 2017

SORY I'M I GRADE 6

3 tháng 5 2018

????????