Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B=1.1+2.2+3.3+...+20.20
=>B=1.(2-1)+2.(3-1)+3.(4-1)+...+20.(21-1)
=>B=1.2-1+2.3-2+3.4-3+.....+20.21-20
=>B=1.2+2.3+3.4+....+20.21-(1+2+3+4+5..+20)
Đặt A=1.2+2.3+..+20.21
=>3A=1.2.3+2.3.3+....+20.21.3
=>3A=1.2.3+2.3(4-1)+....+20.21.(22-19)
=>3A=1.2.3+2.3.4-1.2.3+....+20.21.22-19.20.21
=>3A=20.21.22
=>A=20.7.22=3080
Đặt M=1+2+3+...+20
=>M=(1+20).20:2=210
=>B=A-M=3080-210=2870
Vậy B=2870
Ta có quy luật như sau:
S1=1.1+1^2=1
S2=2.2-1.1=2^2-1^2+4-1=3
S3=3.3-(2.2-1.1)=3^2-(2^2-1^2)=9-(4-1)=9-3=6
S4=4.4.[3.3.(2.2-1.1)]=4^2.[3^2.(2^2-1^1)]=16.[9.(4-1)]=16.(9.3)=16.27=432
S5=?
Đây là một câu hỏi dành cho những bạn chuyên toán bài trên các bạn đã được gợi ý một phần ba gợi ý rồi đấy.
S5 vẫn sẽ là một câu hỏi cho các bạn, các bạn chỉ cần tìm ra quy luật của các tổng là nhận ra ngay.
Nếu các bạn nhận ra thì chúc mừng.
Trích:
Ta có : n.n! = [(n + 1) - 1].n! = (n + 1).n! - n! = 1.2.3.....n.(n + 1) - n! = (n + 1)! - n! N = 1.1! + 2.2! + 3.3! + ... + n.n! = 2! - 1! + 3! - 2! + 4! - 3! + ... + (n + 1)! - n! = - 1! + (n + 1)! = (n + 1)! - 1 |
Trích:
1.1!+2.2!+3.3!+4.4!+5.5! =(2-1).1!+(3-1).2!+(4-1).3!+ (5-1).4!+(6-1).5! =2!-1!+3!-2!+4!-3!+5!-4!+6!-5! =6!-1!=720-1=719 |
Ta có :
Đặt A=1.1+2.2+3.3+....+100.100
=>A=1.(2-1)+2.(3-1)+3.(4-1)+.....+100.(101-1)
=>A=1.2-1+2.3-2+3.4-3+.....+100.101-100
=>A=1.2+2.3+3.4+...+100.101-(1+2+3+....+100)
Đặt B=1.2+2.3+3.4+...+100.101
=>3B=1.2.3+2.3.3+3.4.3+.....+100.101.3
=>3B=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+.....+100.101.(102-99)
=>3B=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+.....+99.100.101+100.101.102-99.100.101
=>3B=100.101.102
=>B=343400
Đặt C=1+2+3+4+5+.....+100=(1+100).100:2=5050
=>A=343400-5050=338350
cho mk 1 tích nha
Ta có :
Đặt A=1.1+2.2+3.3+....+100.100
=>A=1.(2-1)+2.(3-1)+3.(4-1)+.....+100.(101-1)
=>A=1.2-1+2.3-2+3.4-3+.....+100.101-100
=>A=1.2+2.3+3.4+...+100.101-(1+2+3+....+100)
Đặt B=1.2+2.3+3.4+...+100.101
=>3B=1.2.3+2.3.3+3.4.3+.....+100.101.3
=>3B=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+.....+100.101.(102-99)
=>3B=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+.....+99.100.101+100.101.102-99.100.101
=>3B=100.101.102
=>B=343400
Đặt C=1+2+3+4+5+.....+100=(1+100).100:2=5050
=>A=343400-5050=338350
Học tốt<3
a/
\(a=1.2.4+2.3.4+3.4.4+...+15.16.4=\)
\(=4\left(1.2+2.3+3.4+...+15.16\right)=\)
Đặt bt trong ngoặc đơn là A
\(3A=1.2.3+2.3.3+3.4.3+...+15.16.3=\)
\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+15.16.\left(17-14\right)=\)
\(=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...-14.15.16+15.16.17=\)
\(=15.16.17\Rightarrow A=\dfrac{15.16.17}{3}=5.16.17\)
\(\Rightarrow a=4A=4.5.16.17\)
b/
\(b=1.\left(2-1\right)+2.\left(3-1\right)+3.\left(4-1\right)+...+20.\left(21-1\right)=\)
\(=\left(1.2+2.3+3.4+...+20.21\right)-\left(1+2+3+...+20\right)=\)
Biểu thức trong dấu ngoặc đơn thứ nhất tính như tính A ở câu a. Biểu thức trong dấu ngoặc đơn thứ 2 là tính tổng 1 cấp số cộng.
a, Để tính tổng , ta sử dụng công thức:
Sn = (n/2)(a + l)
trong đó Sn là tổng của dãy, n là số hạng, a là hạng đầu và l là hạng cuối.
=>Sn=(15/2)(8+960)=7260
b,
Để tính tổng , ta sử dụng công thức:
Sn = (n/2)(a + l)
trong đó Sn là tổng của dãy, n là số hạng, a là hạng đầu và l là hạng cuối.
=>Sn=(20/2)(1+400)=4010
c,
Để tính tổng , ta sử dụng công thức:
Sn = (n/2)(a + l)
trong đó Sn là tổng của dãy, n là số hạng, a là hạng đầu và l là hạng cuối.
=>Sn=(19/2)(19+19)=361.