K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2018

\(A=1.2.3+2.3.4+...+98.99.100\)

\(4A=1.2.3.\left(4-0\right)+2.3.4.\left(5-1\right)+....+98.99.100.\left(101-97\right)\)

\(4A=1.2.3.4+2.3.4.5-1.2.3.4+...+98.99.100.101-97.98.99.100\)

\(4A=98.99.100.101\)

\(A=\frac{98.99.100.101}{4}\)

a: \(A=\left(\dfrac{1}{99}+1\right)+\left(\dfrac{2}{98}+1\right)+...+\left(\dfrac{98}{2}+1\right)+1\)

\(=\dfrac{100}{99}+\dfrac{100}{98}+...+\dfrac{100}{2}+\dfrac{100}{100}\)

\(=100\cdot\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)\)=100B

=>B/A=1/100

b: \(A=\left(\dfrac{1}{49}+1\right)+\left(\dfrac{2}{48}+1\right)+\left(\dfrac{3}{47}+1\right)+...+\left(\dfrac{48}{2}+1\right)+\left(1\right)\)

\(=\dfrac{50}{49}+\dfrac{50}{48}+....+\dfrac{50}{2}+\dfrac{50}{50}\)

\(=50\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)\)

\(B=\dfrac{2}{2}+\dfrac{2}{3}+\dfrac{2}{4}+...+\dfrac{2}{49}+\dfrac{2}{50}\)

\(=2\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)\)

=>A/B=25

a: Ta có: \(\left(\dfrac{3}{2}x-\dfrac{1}{5}\right)^2\cdot\left(x^2+\dfrac{1}{2}\right)=0\)

\(\Leftrightarrow x\cdot\dfrac{3}{2}=\dfrac{1}{5}\)

hay \(x=\dfrac{1}{5}:\dfrac{3}{2}=\dfrac{2}{15}\)

b: Ta có: \(\dfrac{x+1}{99}+\dfrac{x+2}{98}+\dfrac{x+3}{97}+\dfrac{x+4}{96}=-4\)

\(\Leftrightarrow x+100=0\)

hay x=-100

2 tháng 10 2021

Mn nhớ giải chi tiết ra nha

6 tháng 3 2023

\(S=1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\\ 3S=1\cdot2\cdot3+2\cdot3\cdot3+3\cdot3\cdot4+...+3\cdot99\cdot100\\ 3S=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+3\cdot4\cdot\left(5-2\right)+...+99\cdot100\cdot\left(101-98\right)\\ 3S=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+....+99\cdot100\cdot101-98\cdot99\cdot100\\ 3S=99\cdot100\cdot101\\ S=\dfrac{99\cdot100\cdot101}{3}=33\cdot100\cdot101=3300\cdot101=333300\)

3 tháng 12 2017

Đặt A = 1 . 2 . 3 + 2 . 3 . 4 + ... + 98 . 99 . 100

\(\Rightarrow\) 4A = 1 . 2 . 3 . 4 + 2 . 3 . 4 . (5 - 1) +...+ 98 . 99 . 100 . (101 - 97)

\(\Rightarrow\) 4A = 1 . 2 . 3 . 4 + 2 . 3 . 4 . 5 - 2 . 3 . 4 . 1 + ... + 98 . 99 . 100 . 101 - 98 . 99 . 100 . 97

\(\Rightarrow\) 4A = 98 . 99 . 100 . 101

\(\Rightarrow\) 4A = 97990200

\(\Rightarrow\) A = 24497550

4 tháng 1 2019

Đặt A = 1 . 2 . 3 + 2 . 3 . 4 + ... + 98 . 99 . 100

=>4A = 1 . 2 . 3 . 4 + 2 . 3 . 4 . (5 - 1) +...+ 98 . 99 . 100 . (101 - 97)

=>4A = 1 . 2 . 3 . 4 + 2 . 3 . 4 . 5 - 2 . 3 . 4 . 1 + ... + 98 . 99 . 100 . 101 - 98 . 99 . 100 . 97

=>4A = 98 . 99 . 100 . 101 4A = 97990200

=>A = 24497550

Vậy A= 24497550

22 tháng 8 2017

câu 1 

=> x+1/2+x+1/3+x+1/4-x-1/5-x-1/6=0

=> (x+x+x-x-x)+(1/2+1/3+1/4-1/5-1/6)=0

=> x+43/60=0

=> x = -43/60

câu dưới làm tương tự bạn nhé!

15 tháng 7 2017

a) \(\frac{x}{4}=\frac{16}{x^2}\)\(=>x^3=16.4\)\(=>x^3=64\)\(=>x=4\)

b) \(\frac{4}{3}:\frac{4}{5}=\frac{2}{3}.\left(\frac{1}{10}.x\right)\)\(=>\frac{4}{3}.\frac{5}{4}=\frac{2}{3}\left(\frac{1}{10}x\right)\)\(=>\frac{5}{3}=\frac{2}{3}\left(\frac{1}{10}x\right)\)\(=>\frac{5}{3}:\frac{2}{3}=\frac{1}{10}x\)\(=>\frac{5}{3}.\frac{3}{2}=\frac{1}{10}x\)\(=>\frac{5}{2}=\frac{1}{10}x\)\(=>x=\frac{5}{2}:\frac{1}{10}\)\(=>x=\frac{5}{2}.10\)\(=>x=25\)

vậy x=25

15 tháng 7 2017

1.

a) \(\frac{x}{4}=\frac{16}{x^2}\)

\(\Rightarrow x^3=64\)

\(\Rightarrow x^3=4^3\)

\(\Rightarrow x=4\)

b) \(1\frac{1}{3}:0,8=\frac{2}{3}.\left(0,1.x\right)\)

\(\frac{5}{3}=\frac{2}{3}.\frac{x}{10}\)

\(\frac{x}{10}=\frac{5}{2}\)

\(\Rightarrow x=\frac{5.10}{2}=25\)

2.

\(A=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}+\frac{1}{3^{99}}\)

\(3A=1+\frac{1}{3}+...+\frac{1}{3^{97}}+\frac{1}{3^{98}}\)

\(3A-A=\left(1+\frac{1}{3}+...+\frac{1}{3^{97}}+\frac{1}{3^{98}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}+\frac{1}{3^{99}}\right)\)

\(2A=1-\frac{1}{3^{99}}< 1\)

\(\Rightarrow A=\frac{1-\frac{1}{3^{99}}}{2}< \frac{1}{2}\)

30 tháng 4 2021

#muon roi ma sao con 

\(\frac{x+1}{99}+\frac{x+2}{98}+\frac{x+3}{97}+\frac{x+4}{96}=-4\)

\(\Leftrightarrow\frac{x+100}{99}+\frac{x+100}{98}+\frac{x+100}{97}+\frac{x+100}{96}=0\)

\(\Leftrightarrow\left(x+100\right)\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{97}+\frac{1}{96}\ne0\right)=0\Leftrightarrow x=-100\)

Vậy x = -100