Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+1\right)\left(xy-1\right)^2=3=1.3=3.1\)
có \(\left(xy-1\right)^2\ge0\)nên \(\left(xy-1\right)^2=1\Rightarrow x+1=3\Leftrightarrow x=2\)
\(\left(xy-1\right)^2=1\Leftrightarrow\orbr{\begin{cases}2y-1=1\\2y-1=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}y=1\\y=0\end{cases}}}\)
Vậy có các nghiệm \(\left(x,y\right)=\left\{\left(2,1\right),\left(2,0\right)\right\}\)
\(x\cdot y=6\)
\(\Rightarrow\hept{\begin{cases}x=1\\y=6\end{cases}}\)hoặc \(\hept{\begin{cases}x=-1\\y=-6\end{cases}}\)
hoặc \(\hept{\begin{cases}x=6\\y=1\end{cases}}\)hoặc \(\hept{\begin{cases}x=-6\\y=-1\end{cases}}\)
hoặc \(\hept{\begin{cases}x=2\\y=3\end{cases}}\)hoặc \(\hept{\begin{cases}x=-2\\y=-3\end{cases}}\)
hoặc \(\hept{\begin{cases}x=3\\y=2\end{cases}}\)hoặc \(\hept{\begin{cases}x=-3\\y=-2\end{cases}}\)
Ta thấy:
Câu 1: \(xy-x+2y=5\)
\(\Rightarrow xy-x+2y-2=3\)
\(\Rightarrow x\left(y-1\right)+2\left(y-1\right)=3\)
\(\Rightarrow\left(x+2\right)\left(y-1\right)=3\)
Do \(x,y\in Z\) nên \(x+2,y-1\in Z\). Khi đó ta có bảng sau:
x + 2 | 3 | 1 | -1 | -3 |
y - 1 | 1 | 3 | -3 | -1 |
x | 1 | -1 | -3 | -5 |
y | 2 | 4 | -2 | 0 |
Câu 2: \(x\left(y+2\right)+y=1\)
\(\Rightarrow x\left(y+2\right)+\left(y+2\right)=3\)
\(\Rightarrow\left(x+1\right)\left(y+2\right)=3\)
Do \(x,y\in Z\) nên \(x+1,y+2\in Z\). Khi đó ta có bảng sau:
x + 1 | 3 | 1 | -1 | -3 |
y + 2 | 1 | 3 | -3 | -1 |
x | 2 | 0 | -2 | -4 |
y | -1 | 1 | -5 | -3 |
Câu 3: \(xy=x-y\)
\(\Rightarrow xy-x+y=0\)
\(\Rightarrow xy-x+y-1=-1\)
\(\Rightarrow x\left(y-1\right)+\left(y-1\right)=-1\)
\(\Rightarrow\left(x+1\right)\left(y-1\right)=-1\)
Do \(x,y\in Z\) nên \(x+1,y-1\in Z\). Khi đó ta có bảng sau:
x + 1 | 1 | -1 |
y - 1 | -1 | 1 |
x | 0 | -2 |
y | 0 | 2 |
\(\left(x+y\right)\left(x-y\right)=7\)
Vì \(x+y+x-y=2x\) chẵn
⇒ \(\left[{}\begin{matrix}x+y\text{⋮}2\\x-y\text{⋮}2\end{matrix}\right.\)
⇒ \(\left(x+y\right)\left(x-y\right)\text{⋮}4\)
mà 7 không chia hết cho 4
⇒ Không tồn tại x,y
a) Vì 7 = 1.7 mà x+y > x-y
=> x+y = 7 và x-y = 1
Bạn đưa về bài toán tổng hiệu nhé!
b) x2 + y + x + xy = 11
x2 + xy + y + x = 11
x(x+y) + (y + x) = 11
(x + y) . ( x+1) = 11
Vì 11 = 1.11
=> x+y = 1 và x+1=11 hoặc x+y=11 và x+1=1
+) Với x+1 = 11 => x=10
Mà x+y = 1 => x+y=1 và x+1=11 ( vô lí)
+) Với x+1 = 1 => x=0
Mà x+y=11 => y= 11-0=11 ( thỏa mãn)
Vậy x=0 và y=11
Ta có: (x-2) (xy-1) = 5
Suy ra: x-2; xy-1 thuộc Ư(5)={-1; 1; -5; 5}
Lập bảng:
x-2 | -1 | -5 | 1 | 5 |
x | 1 | -3 | 3 | 7 |
xy-1 | -5 | -1 | 5 | 1 |
y | -4 | 0 | 2 | 2/7 |
Vậy(x;y) = (1; -4) ; (-3 ; 0) ; (3 ; 2)
x,y cộng lại = 4,431 thì sẽ được kết quả thôi
=> có vô số cặp x,y, x,y không đồng thừi là số nguyên dương
Đúng thì like giúp mik nhé. Thx