Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có bảng sau:
x-1 | -5 | 5 | 1 | -1 |
y+4 | -1 | 1 | 5 | -5 |
x | -4 | 6 | 2 | 0 |
y | -5 | -3 | 1 | -9 |
Vậy:
b) Ta có bảng sau:
2x+3 | 11 | -11 | 1 | -1 |
y-2 | 1 | -1 | 11 | -11 |
x | 4 | -7 | -1 | -2 |
y | 3 | 1 | 13 | -9 |
Vậy: ...
`@` `\text {Ans}`
`\downarrow`
`a)`
`(x-1)(y+4) = 5`
`=> (x-1)(y+4) \in \text {Ư(5)} = +-1; +-5`
Ta có bảng sau:
\(x-1\) | \(1\) | \(5\) | \(-1\) | \(-5\) |
\(y+4\) | \(-5\) | \(-1\) | \(5\) | \(1\) |
\(x\) | `2` | `6` | `0` | `-4` |
`y` | `-9` | `-5` | `1` | `-8` |
Vậy, ta có các cặp `x,y` thỏa mãn `{2; -9}; {6; -5}; {0; 1}; {-4; -8}`
Ta có: (x-2) (xy-1) = 5
Suy ra: x-2; xy-1 thuộc Ư(5)={-1; 1; -5; 5}
Lập bảng:
x-2 | -1 | -5 | 1 | 5 |
x | 1 | -3 | 3 | 7 |
xy-1 | -5 | -1 | 5 | 1 |
y | -4 | 0 | 2 | 2/7 |
Vậy(x;y) = (1; -4) ; (-3 ; 0) ; (3 ; 2)
\(xy=x-y+3\)
\(\Leftrightarrow xy-x+y=3\)
\(\Leftrightarrow x\left(y-1\right)+\left(y-1\right)=2\)
\(\Leftrightarrow\left(x+1\right)\left(y-1\right)=2\)
\(\Leftrightarrow x+1;y-1\inƯ\left(2\right)\)
Ta có: \(Ư\left(2\right)=\left\{\pm1;\pm2\right\}\)
Lập bảng:
x + 1 | -1 | 1 | -2 | 2 |
x | -2 | 0 | -3 | 1 |
y - 1 | -2 | 2 | -1 | 1 |
y | -1 | 3 | 0 | 2 |
KL | tm | tm | tm | tm |
Vậy các cặp số nguyên (x; y) thỏa mãn là (-2; -1); (0;3); (-3; 0) và (1; 2)
câu 1;
bạn nhóm 2 cái đầu với 2 cái cuối đặt nhân tử chung nha
câu 2:
bạn chuyển xy sang vế trái rồi nhóm với x hoặc y nha, cái còn lại thì bạn nhóm với 1 và cũng đặt nhân tử chung sau đó thì bạn tính ra nha
BẠN MÀ K LÀM ĐC THÌ CHỊU ĐÓ :)))
mai thùy trang ví dụ mà đưa xy sang vế trái thì sẽ đc là x +y+1 -xy=0 thì là đc x(y-1)+(y+1) hoặc là y(x-1)+(x+1) chứ lm j mà nhóm nhân tử chung đk bn
a) Ta có x.y = 6 và x > y. Với x > y, ta có thể giải quyết bài toán bằng cách thử các giá trị cho x và tìm giá trị tương ứng của y. - Nếu x = 6 và y = 1, thì x.y = 6. Điều này không thỏa mãn x > y. - Nếu x = 3 và y = 2, thì x.y = 6. Điều này thỏa mãn x > y. Vậy, một giải pháp cho phương trình x.y = 6 với x > y là x = 3 và y = 2. b) Ta có (x-1).(y+2) = 10. Mở ngoặc, ta có x.y + 2x - y - 2 = 10. Từ phương trình ban đầu (x.y = 6), ta có 6 + 2x - y - 2 = 10. Simplifying the equation, we get 2x - y + 4 = 10. Tiếp tục đơn giản hóa, ta có 2x - y = 6. c) Ta có (x + 1).(2y + 1) = 12. Mở ngoặc, ta có 2xy + x + 2y + 1 = 12. Từ phương trình ban đầu (x.y = 6), ta có 2(6) + x + 2y + 1 = 12. Simplifying the equation, we get 12 + x + 2y + 1 = 12. Tiếp tục đơn giản hóa, ta có x + 2y = -1. Vậy, giải pháp cho các phương trình là: a) x = 3, y = 2. b) x và y không có giá trị cụ thể. c) x và y không có giá trị cụ thể.
a) ( x-2) ( y+1) =7
=> x-2 \(\in\)Ư(7)= { 1,7}
Nếu x-2 = 1 => x= 1+2 => x= 3
Nếu x-2= 7 => x= 7+2 => x= 9
Nếu x= 3 thì ( x-2) ( y+1) = ( 3-2)(y+1)=7
=> y+1 =7 => y= 7-1 => y = 6
Nếu x = 9 thì ( x- 2 )( y+1)= 7 => ( 9-2) ( y+1) =7
=> 7( y+1) =7 => y+1= 7:7 => y+1 = 1 => y= 1-1 => y=0
Vậy...
Trình bày có chỗ nào sao mong mn sửa hộ nhaaa
vâng
2𝑥2−6𝑥−(𝑥−3)=0
2x2-6x-(x-3)=0
2x2-6x+3=0
2x2-6x+3=0
2x2-7x+3=0
x=7+5/4
x=7-5/4
x=3
x=1/2
chị em bảo làm thế này ạ
\(\left(x+1\right)\left(xy-1\right)^2=3=1.3=3.1\)
có \(\left(xy-1\right)^2\ge0\)nên \(\left(xy-1\right)^2=1\Rightarrow x+1=3\Leftrightarrow x=2\)
\(\left(xy-1\right)^2=1\Leftrightarrow\orbr{\begin{cases}2y-1=1\\2y-1=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}y=1\\y=0\end{cases}}}\)
Vậy có các nghiệm \(\left(x,y\right)=\left\{\left(2,1\right),\left(2,0\right)\right\}\)