Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a*c=-(m^2+m+1)
=-(m^2+m+1/4+3/4)
=-(m+1/2)^2-3/4<0
=>Phương trình luôn có 2 nghiệm pb
a=-1; b=-2m^2-2m-2; c=m^2+m+1
A=a*c=-(m^2+m+1)
=-(m^2+m+1/4+3/4)
=-(m+1/2)^2-3/4<0
=>Phương trình luôn có hai nghiệm phân biệt
pt : \(x^2-\left(2m+1\right)x+m^2+m-1=0\)
\(\Delta=\left[-\left(2m+1\right)\right]^2-4.1.\left(m^2+m-1\right)\\ =4m^2+4m+1-4m^2-4m+4=5>0\)
=> pt luôn có 2 nghiệm phân biệt với mọi m
Theo hệ thức Vi ét :
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2m+1}{2}\\x_1.x_2=m^2+m-1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2\left(x_1+x_2\right)=2m+1\\x_1.x_2=m^2+m-1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}4\left(x_1+x_2\right)^2=4m^2+4m+1\\4x_1x_2=4m^2+4m-4\end{matrix}\right.\)
\(\Rightarrow4\left(x_1+x_2\right)^2-4x_1x_2=5\) ( Không phụ thuộc vào m - DPCM )
a, Thay m = 1 ta đc
\(x^2-1=0\Leftrightarrow x=1;x=-1\)
b, \(\Delta'=\left(m-1\right)^2-\left(2m-3\right)=m^2-4m+4=\left(m-2\right)^2\)
Để pt có 2 nghiệm pb khi delta' > 0
\(m-2\ne0\Leftrightarrow m\ne2\)
c, để pt có 2 nghiệm trái dấu khi \(x_1x_2=2m-3< 0\Leftrightarrow m< \dfrac{3}{2}\)
d.
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m-2\\x_1x_2=2m-3\end{matrix}\right.\)
Trừ vế cho vế:
\(\Rightarrow x_1+x_2-x_1x_2=1\)
Đây là hệ thức liên hệ 2 nghiệm ko phụ thuộc m
a: \(\text{Δ}=\left(2m-2\right)^2-4\left(2m-3\right)\)
\(=4m^2-8m+4-8m+12\)
\(=4m^2-16m+16\)
\(=\left(2m-4\right)^2>=0\)
Do đó: Phương trình luôn có nghiệm
b: Để phương trình có hai nghiệm trái dấu thì 2m-3<0
hay m<3/2
c: Để phương trình có hai nghiệm sao cho nghiệm này gấp đôi nghiệm kia thì ta có hệ phương trình:
\(\left\{{}\begin{matrix}x_1-2x_2=0\\x_1+x_2=2m-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3x_2=-2m+2\\x_1=2x_2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{2m-2}{3}\\x_1=\dfrac{4m-4}{3}\end{matrix}\right.\)
Ta có: \(x_1x_2=2m-3\)
\(\Leftrightarrow2m-3=\dfrac{2m-2}{3}\cdot\dfrac{4m-4}{3}\)
\(\Leftrightarrow8\left(m-1\right)^2=9\left(2m-3\right)\)
\(\Leftrightarrow8m^2-16m+8-18m+27=0\)
\(\Leftrightarrow8m^2-34m+35=0\)
\(\text{Δ}=\left(-34\right)^2-4\cdot8\cdot35=36>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}m_1=\dfrac{34-6}{16}=\dfrac{28}{16}=\dfrac{7}{4}\\m_2=\dfrac{34+6}{16}=\dfrac{40}{16}=\dfrac{5}{2}\end{matrix}\right.\)
câu a
Gọi x0 là nghiệm chung của PT(1) và (2)
\(\Rightarrow\left\{{}\begin{matrix}2x^2_0+\left(3m-1\right)x_0-3=0\left(\times3\right)\\6.x^2_0-\left(2m-1\right)x_0-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x^2_0+3\left(3m-1\right)x_0-9=0\left(1\right)\\6x^2_0-\left(2m-1\right)x_0-1=0\left(2\right)\end{matrix}\right.\) Lấy (1)-(2) ,ta được
PT\(\Leftrightarrow3\left(3m-1\right)-9+\left(2m-1\right)+1\)=0
\(\Leftrightarrow9m-3-9+2m-1+1=0\Leftrightarrow11m-12=0\)
\(\Leftrightarrow m=\dfrac{12}{11}\)
Bổ sung cho mik vào chỗ Theo hệ thức Vi-ét ta có: \(\hept{\begin{cases}x_1+x_2=\frac{1-2m}{2}\\x_1x_2=\frac{m-1}{2}\end{cases}}\)
Phương trình: \(2x^2+\left(2m-1\right)x+m-1=0\left(1\right)\)
* Thay m = 2 vào phương trình (1) ta có.
\(2x^2+3x+1=0\)
Có (a - b + c = 2 - 3 + 1 = 0)
\(\Rightarrow\) Phương trình (1) có nghiệm \(x_1=-1;x_2=-\frac{1}{2}\)
* Phương trình (1) có \(\left(2m-1\right)^2-8\left(m-1\right)\)
= \(4m^2-12m+9\)
= \(\left(2m-3\right)^2\) 0 với mọi m.
\(\Rightarrow\)Phương trình (1) luôn có hai nghiệm \(x_1,x_2\) với mọi giá trị của m.
+ Theo hệ thức Vi-ét ta có:
\(4x_1^2+4x_2^2+2x_1x_2=1\)
\(\Leftrightarrow\) \(4\left(x_1+x_2\right)^2-6x_1x_2=1\)
\(\Leftrightarrow\) \(\left(1-2m\right)^2-3m+3=1\)
\(\Leftrightarrow\) \(4m^2-7m+3=0\)
+ Có a + b + c = 0
\(\Rightarrow m_1\) = 1; \(m_2=\frac{3}{4}\)
Vậy với m = 1 hoặc m = \(\frac{3}{4}\) thì phương trình (1) có hai nghiệm \(x_1;x_2\) thoả mãn:
\(4x_1^2+4x_2^2+2x_1x_2=1\)