Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2x-1\right)^8=\left(2x-1\right)^{18}\)
Ta thừa nhận kết luận sau: Số 1 với bất kì số mũ nào cũng là chính nó.
\(\Rightarrow2x-1=1\) thì \(\left(2x-1\right)^8=\left(2x-1\right)^{18}\)
Giải \(2x-1=1\) ta có:
\(2x-1=1\Leftrightarrow2x=2\Leftrightarrow x=1\)
tthctv xem lại nhá :)
\(\left(2x-1\right)^8=\left(2x-1\right)^{18}\)
\(\Leftrightarrow\)\(\left(2x-1\right)^{18}-\left(2x-1\right)^8=0\)
\(\Leftrightarrow\)\(\left(2x-1\right)^8\left[\left(2x-1\right)^{10}-1\right]=0\)
\(\Leftrightarrow\)\(\left(2x-1\right)\left(2x-1-1\right)\left(2x-1+1\right)=0\)
\(\Leftrightarrow\)\(2x\left(2x-1\right)\left(2x-2\right)=0\)
\(\Leftrightarrow\)\(2x=0\)\(\Leftrightarrow\)\(x=0\)
Hoặc \(2x-1=0\)\(\Leftrightarrow\)\(x=\frac{1}{2}\)
Hoặc \(2x-2=0\)\(\Leftrightarrow\)\(x=1\)
Vậy \(x=0\)\(x=\frac{1}{2}\) hoặc \(x=1\)
Chúc bạn học tốt ~
Lời giải:
$2^x+2^{x+1}+2^{x+2}+....+2^{x+2020}=2^{x+2024}-8$
$2^x(1+2+2^2+...+2^{2020})=2^{x+2024}-8$
$2^x(2+2^2+2^3+...+2^{2021})=2^{x+2025}-16$
$\Rightarrow 2^x(2+2^2+2^3+...+2^{2021})- (2^x(1+2+2^2+...+2^{2020}))=2^{x+2025}-16-(2^{x+2024}-8)$
$\Rightarrow 2^x(2^{2021}-1)=2^{x+2025}-2^{x+2024}-8$
$\Rightarrow 2^x(2^{2021}-1)=2^{x+2024}(2-1)-8$
$\Rightarrow 2^{x+2021}-2^x=2^{3+2021}-2^3$
$\Rightarrow x=3$
\(2VT=2^{x+1}+2^{x+2}+2^{x+3}+...+...+2^{x+2016}\)
\(VT=2VT-VT=2^{x+2016}-2^x=2^{2016}.2^x+2^x=2^x\left(2^{2016}+1\right)\)
\(VP=2^{2019}-2^3=2^3\left(2^{2016}-1\right)\)
\(\Rightarrow2^2\left(2^{2016}-1\right)=2^3\left(2^{2016}-1\right)\)
\(\Rightarrow2^x=2^3\Rightarrow x=3\)
\(2^x+2^{x+1}+2^{x+2}+2^{x+2015}=2^{2019}-8\left(1\right)\)
Đặt \(S=2^x+2^{x+1}+2^{x+2}+2^{x+2015}\)
\(\Rightarrow S+\left(1+2^2+...2^{x-1}\right)=\left(1+2^2+...2^{x-1}\right)+2^x+2^{x+1}+2^{x+2}+2^{x+2015}\)
\(\Rightarrow S+\dfrac{2^{x-1+1}-1}{2-1}=1+2^2+...2^{x-1}+2^x+2^{x+1}+2^{x+2}+2^{x+2015}\)
\(\Rightarrow S+2^x-1=\dfrac{2^{x+2015+1}-1}{2-1}\)
\(\Rightarrow S+2^x-1=2^{x+2016}-1\)
\(\Rightarrow S=2^{x+2016}-2^x\)
\(\left(1\right)\Rightarrow2^{x+2016}-2^x=2^{2019}-8=2^{2019}-2^3\)
\(\Rightarrow2^x\left(2^{2016}-1\right)=2^3\left(2^{2016}-1\right)\)
\(\Rightarrow2^x=2^3\Rightarrow x=3\)
2 . 1/8 = 2/2.4 + 2/4.6 + ...+ 2/((2x -2).2x)
1/4 = 4-2/2.4 + 6-4/4.6 + ... + 2x-(2x-2)/(2x-2)+2x
1/4 = 1/2 - 1/4 + 1/4 - 1/6 + 1/6 - 1/8 + ... + 1/2x -2 - 1/2x
1/4 = 1/2 - 1/2x
1/4 = 2x-2/2.2x
Tự làm tiếp nhé
Đặt \(A=\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{\left(2x-2\right).2x}\)
\(\Rightarrow A=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2x-2}-\frac{1}{2x}\right)\)
\(\Rightarrow A=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2x}\right)\)
\(\Rightarrow\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2x}\right)=\frac{1}{8}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{2x}=\frac{1}{4}\)
\(\Rightarrow\frac{1}{2x}=\frac{1}{4}\)
\(\Rightarrow2x=4\)
\(\Rightarrow x=2\)
Đặt \(A=\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{\left(2x-2\right).2x}\)
\(\Rightarrow A=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{2x-2}-\frac{1}{2x}\right)\)
\(\Rightarrow A=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2x}\right)\)
\(\Rightarrow\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2x}\right)=\frac{1}{8}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{2x}=\frac{1}{4}\)
\(\Rightarrow\frac{1}{2x}=\frac{1}{4}\)
\(\Rightarrow2x=4\)
\(\Rightarrow x=2\)
a: =>1/3:x=3/5-2/3=9/15-10/15=-1/15
=>x=-1/3:1/15=5
b: \(\Leftrightarrow x\cdot\dfrac{2}{3}-3=\dfrac{2}{5}\cdot\left(-10\right)=-4\)
=>x*2/3=-1
=>x=-3/2
c: =>2x+1=4 hoặc 2x+1=-4
=>x=3/2 hoặc x=-5/2
h: =>x-3=4
=>x=7
g: =>2x-1=3
=>2x=4
=>x=2
f: \(\Leftrightarrow x\cdot\left(\dfrac{3}{2}-\dfrac{7}{3}\right)=\dfrac{3}{2}-\dfrac{2}{3}\)
=>x*-5/6=5/6
=>x=-1
d: =>|2x-1|=3
=>2x-1=3 hoặc 2x-1=-3
=>x=-1 hoặc x=2
a, \(\dfrac{x}{2}+\dfrac{3x}{4}=\dfrac{4}{5}\Leftrightarrow\dfrac{10x+15x}{20}=\dfrac{16}{20}\Rightarrow25x=16\Leftrightarrow x=\dfrac{16}{25}\)
b, \(\dfrac{3}{7}.\dfrac{5}{8}-\dfrac{3}{8}.\dfrac{13}{8}+\dfrac{1}{7}=\dfrac{15}{56}-\dfrac{39}{64}+\dfrac{1}{7}\)
\(=\dfrac{120}{448}-\dfrac{273}{448}+\dfrac{64}{448}=-\dfrac{89}{448}\)