Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,(2x+1)(y-3)=12
⇒⇒2x+1 và y-3 ∈∈Ư(12)={±1;±2;±3;±4;±6;±12}{±1;±2;±3;±4;±6;±12}
2x+1 | 1 | -1 | 2 | -2 | 3 | -3 |
y-3 | 12 | -12 | 6 | -6 | 4 | -4 |
x | 0 | -1 | 1212 | −32−32 | 1 | -2 |
y | 15 | -9 | 9 | 3 | 7 | -1 |
=>x=0,y=15
c) Ta có: \(36^{25}=\left(6^2\right)^{25}=6^{50}\)
\(25^{36}=\left(5^2\right)^{36}=5^{72}\)
Ta có: \(6^{50}=\left(6^5\right)^{10}=7776^{10}\)
mà \(5^{70}=\left(5^7\right)^{10}=78125^{10}\)
nên \(6^{50}< 5^{70}\)
mà \(5^{70}< 5^{72}\)
nên \(6^{50}< 5^{72}\)
hay \(36^{25}< 25^{36}\)
a/
Với $x,y$ là số tự nhiên $2x+1, y-3$ là số nguyên. Mà $(2x+1)(y-3)=12$ nên $2x+1$ là ước của 12.
$2x+1>0, 2x+1$ lẻ nên $2x+1\in \left\{1;3\right\}$
Nếu $2x+1=1\Rightarrow y-3=12$
$\Rightarrow x=0; y=15$
Nếu $2x+1=3\Rightarrow y-3=4$
$\Rightarrow x=1; y=7$
Vậy...........
b/
$2^x+2^{x+1}+2^{x+2}+...+2^{x+2015}=2^{2019}-8$
$2^x(1+2+2^2+2^3+...+2^{2015})=2^{2019}-8(1)$
$2^x(2+2^2+2^3+2^4+...+2^{2016})=2^{2020}-16(2)$ (nhân 2 vế với 2)
Lấy (2) trừ (1) theo vế thì:
$2^x(2^{2016}-1)=2^{2020}-2^{2019}-8$
$2^x(2^{2016}-1)=2^{2019}(2-1)-8=2^{2019}-8$
$2^x(2^{2016}-1)=2^3(2^{2016}-1)$
$\Rightarrow 2^x=2^3$
$\Rightarrow x=3$
Có tất cả 2015 số hạng
Tổng bằng (2x+1+2x+2015).2015/2=0
4x+2016=0
4x=0-2016=-2016
x=(-2016):4=-504
100% đúng
( 2x + 1 ) + ( 2x + 2 ) + ... + ( 2x + 2015 ) = 0
=> ( 2x + 2x + ...+ 2x ) + ( 1 + 2 + ... + 2015 ) = 0
2015 số 2x
=> 2x . 2015 + 2031120 = 0
=> 2x . 2015 = 0 - 2031120
=> 2x . 2015 = - 2031120
=> 2x = ( - 2031120 ) : 2015
=> 2x = - 1008
=> x = ( - 1008 ) : 2
=> x = - 504
Chúc bạn học tốt nha !!!
=> ( 2x + 2x + ... + 2x + 2x ) + ( 1 + 2 + ... + 2014 + 2015 ) = 0
=> ( 2x.2015 ) + { [ 2015 . ( 2015 + 1 ) ] : 2 } = 0
=> 4030x + [ ( 2015 . 2016 ) : 2 ] = 0
=> 4030x + 2031120 = 0
=> 4030x = - 2031120
=> x = - 2031120 : 4030
=> x = - 504
Vậy x = - 504
( 2x+1) + ( 2x+2) +.....+ ( 2x+2015) = 0
(2x+2x+....+2x)+(1+2+...+2015)=0
Vì cứ 1 số hạng lại có 2x
Vậy từ 1 đến 2015 có số số hạng là:
(2015-1):1+1=2015(số)
Tổng dãy số là:
(2015+1)x2015:2=2031120
Vậy có 2015 số 2x
Ta có:
(2x+2x+....+2x)+(1+2+...+2015)=0
4030x+2031120=0
403x=-2031120
x=-2031120:403
x=-5040
Vậy x=-5040
(2x + 1) + (2x + 2) + ... + (2x + 2015) = 0
=> 2x + 1 + 2x + 2 + ... + 2x + 2015 = 0
=> 2015.2x + (2015 + 1).2015 : 2 = 0
=> 4030x + 2031120 = 0
=> 4030x = -2031120
=> x = -504
Có tất cả 2015 số hạng
Tổng là
(2x+1+2x+2015).2015:2=0
4x+2016=0
4x=-2016
x=(-2016):4=-504
\(2VT=2^{x+1}+2^{x+2}+2^{x+3}+...+...+2^{x+2016}\)
\(VT=2VT-VT=2^{x+2016}-2^x=2^{2016}.2^x+2^x=2^x\left(2^{2016}+1\right)\)
\(VP=2^{2019}-2^3=2^3\left(2^{2016}-1\right)\)
\(\Rightarrow2^2\left(2^{2016}-1\right)=2^3\left(2^{2016}-1\right)\)
\(\Rightarrow2^x=2^3\Rightarrow x=3\)
\(2^x+2^{x+1}+2^{x+2}+2^{x+2015}=2^{2019}-8\left(1\right)\)
Đặt \(S=2^x+2^{x+1}+2^{x+2}+2^{x+2015}\)
\(\Rightarrow S+\left(1+2^2+...2^{x-1}\right)=\left(1+2^2+...2^{x-1}\right)+2^x+2^{x+1}+2^{x+2}+2^{x+2015}\)
\(\Rightarrow S+\dfrac{2^{x-1+1}-1}{2-1}=1+2^2+...2^{x-1}+2^x+2^{x+1}+2^{x+2}+2^{x+2015}\)
\(\Rightarrow S+2^x-1=\dfrac{2^{x+2015+1}-1}{2-1}\)
\(\Rightarrow S+2^x-1=2^{x+2016}-1\)
\(\Rightarrow S=2^{x+2016}-2^x\)
\(\left(1\right)\Rightarrow2^{x+2016}-2^x=2^{2019}-8=2^{2019}-2^3\)
\(\Rightarrow2^x\left(2^{2016}-1\right)=2^3\left(2^{2016}-1\right)\)
\(\Rightarrow2^x=2^3\Rightarrow x=3\)