K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2023

\(2VT=2^{x+1}+2^{x+2}+2^{x+3}+...+...+2^{x+2016}\)

\(VT=2VT-VT=2^{x+2016}-2^x=2^{2016}.2^x+2^x=2^x\left(2^{2016}+1\right)\)

\(VP=2^{2019}-2^3=2^3\left(2^{2016}-1\right)\)

\(\Rightarrow2^2\left(2^{2016}-1\right)=2^3\left(2^{2016}-1\right)\)

\(\Rightarrow2^x=2^3\Rightarrow x=3\)

5 tháng 8 2023

\(2^x+2^{x+1}+2^{x+2}+2^{x+2015}=2^{2019}-8\left(1\right)\)

Đặt \(S=2^x+2^{x+1}+2^{x+2}+2^{x+2015}\)

\(\Rightarrow S+\left(1+2^2+...2^{x-1}\right)=\left(1+2^2+...2^{x-1}\right)+2^x+2^{x+1}+2^{x+2}+2^{x+2015}\)

\(\Rightarrow S+\dfrac{2^{x-1+1}-1}{2-1}=1+2^2+...2^{x-1}+2^x+2^{x+1}+2^{x+2}+2^{x+2015}\)

\(\Rightarrow S+2^x-1=\dfrac{2^{x+2015+1}-1}{2-1}\)

\(\Rightarrow S+2^x-1=2^{x+2016}-1\)

\(\Rightarrow S=2^{x+2016}-2^x\)

\(\left(1\right)\Rightarrow2^{x+2016}-2^x=2^{2019}-8=2^{2019}-2^3\)

\(\Rightarrow2^x\left(2^{2016}-1\right)=2^3\left(2^{2016}-1\right)\)

\(\Rightarrow2^x=2^3\Rightarrow x=3\)

a,(2x+1)(y-3)=12

⇒⇒2x+1 và y-3 ∈∈Ư(12)={±1;±2;±3;±4;±6;±12}{±1;±2;±3;±4;±6;±12}

2x+11-12-23-3
y-312-126-64-4
x0-11212−32−321-2
y15-9937-1

=>x=0,y=15

 

c) Ta có: \(36^{25}=\left(6^2\right)^{25}=6^{50}\)

\(25^{36}=\left(5^2\right)^{36}=5^{72}\)

Ta có: \(6^{50}=\left(6^5\right)^{10}=7776^{10}\)

mà \(5^{70}=\left(5^7\right)^{10}=78125^{10}\)

nên \(6^{50}< 5^{70}\)

mà \(5^{70}< 5^{72}\)

nên \(6^{50}< 5^{72}\)

hay \(36^{25}< 25^{36}\)

AH
Akai Haruma
Giáo viên
28 tháng 1

a/

Với $x,y$ là số tự nhiên $2x+1, y-3$ là số nguyên. Mà $(2x+1)(y-3)=12$ nên $2x+1$ là ước của 12. 

$2x+1>0, 2x+1$ lẻ nên $2x+1\in \left\{1;3\right\}$

Nếu $2x+1=1\Rightarrow y-3=12$

$\Rightarrow x=0; y=15$

Nếu $2x+1=3\Rightarrow y-3=4$

$\Rightarrow x=1; y=7$ 

Vậy...........

AH
Akai Haruma
Giáo viên
28 tháng 1

b/

$2^x+2^{x+1}+2^{x+2}+...+2^{x+2015}=2^{2019}-8$

$2^x(1+2+2^2+2^3+...+2^{2015})=2^{2019}-8(1)$
$2^x(2+2^2+2^3+2^4+...+2^{2016})=2^{2020}-16(2)$ (nhân 2 vế với 2)

Lấy (2) trừ (1) theo vế thì:

$2^x(2^{2016}-1)=2^{2020}-2^{2019}-8$

$2^x(2^{2016}-1)=2^{2019}(2-1)-8=2^{2019}-8$

$2^x(2^{2016}-1)=2^3(2^{2016}-1)$

$\Rightarrow 2^x=2^3$

$\Rightarrow x=3$

24 tháng 12 2021

Kiểm tra lại đề câu b nhé!

5 tháng 2 2016

Có tất cả 2015 số hạng

Tổng bằng (2x+1+2x+2015).2015/2=0

4x+2016=0

4x=0-2016=-2016

x=(-2016):4=-504

100% đúng

1 tháng 3 2016

( 2x + 1 ) + ( 2x + 2 ) + ... + ( 2x + 2015 ) = 0

=> ( 2x + 2x + ...+ 2x ) + ( 1 + 2 + ... + 2015 ) = 0

                2015 số 2x

=> 2x . 2015 + 2031120 = 0

=> 2x . 2015 = 0 - 2031120 

=> 2x . 2015 = - 2031120

=> 2x = ( - 2031120 ) : 2015

=> 2x = - 1008

=> x = ( - 1008 ) : 2

=> x = - 504

Chúc bạn học tốt nha !!!

16 tháng 2 2016

=> ( 2x + 2x + ... + 2x + 2x ) + ( 1 + 2 + ... + 2014 + 2015 ) = 0

=> ( 2x.2015 ) + { [ 2015 . ( 2015 + 1 ) ] : 2 } = 0

=> 4030x + [ ( 2015 . 2016 ) : 2 ] = 0

=> 4030x + 2031120 = 0

=> 4030x = - 2031120

=> x = - 2031120 : 4030

=> x = - 504

Vậy x = - 504

16 tháng 2 2016

( 2x+1) + ( 2x+2) +.....+ ( 2x+2015) = 0

(2x+2x+....+2x)+(1+2+...+2015)=0

Vì cứ 1 số hạng lại có 2x

Vậy từ 1 đến 2015 có số số hạng là:

    (2015-1):1+1=2015(số)

Tổng dãy số là:

   (2015+1)x2015:2=2031120

Vậy có 2015 số 2x

Ta có:

(2x+2x+....+2x)+(1+2+...+2015)=0

4030x+2031120=0

403x=-2031120

x=-2031120:403

x=-5040

Vậy x=-5040

3 tháng 3 2016

(2x + 1) + (2x + 2) + ... + (2x + 2015) = 0

=> 2x + 1 + 2x + 2 + ... + 2x + 2015 = 0

=> 2015.2x + (2015 + 1).2015 : 2 = 0

=> 4030x + 2031120 = 0

=> 4030x = -2031120

=> x = -504

3 tháng 3 2016

Có tất cả 2015 số hạng

Tổng là

(2x+1+2x+2015).2015:2=0

4x+2016=0

4x=-2016

x=(-2016):4=-504