Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Để \(A\in Z\)
\(\Rightarrow3⋮n+1\)
\(\Rightarrow n+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
\(\Rightarrow n\in\left\{0;-2;2;-4\right\}\)
b)\(B=\frac{3n-5}{n+4}=\frac{3\left(n+4\right)-17}{n+4}=\frac{3\left(n+4\right)}{n+4}-\frac{17}{n+4}=3-\frac{17}{n+4}\in Z\)
\(\Rightarrow17⋮n+4\)
\(\Rightarrow n+4\inƯ\left(17\right)=\left\{1;-1;17;-17\right\}\)
\(\Rightarrow n\in\left\{-3;-5;13;-21\right\}\)
\(A=\frac{3}{n+1}\)
Để A nguyên thì n+1\(\in\)Ư(3)
Mà Ư(3)={1;-1;3;-3}
Ta có bảnh sau:
n+1 | 1 | -1 | 3 | -3 |
n | 0 | -2 | 2 | -4 |
Vậy x={-4;-2;0;2}
\(B=\frac{3n+5}{n+4}=\frac{3\left(n+4\right)-7}{n+4}=3-\frac{7}{n+4}\)
Vậy để B nguyên thì n+4 thuộc Ư{7}
Mà:Ư(7)={1;-1;7;-7}
=>n+4={1;-1;7;-7}
Ta có bẳng sao:
n+4 | 1 | -1 | 7 | -7 |
n | -3 | -5 | 3 | -11 |
VaVaayk x={-11;-5;-3;3}
Ta có:
\(\left(\frac{1}{5}+\frac{1}{3}+\frac{3}{10}\right)+-\frac{1}{2}=\frac{1}{5}+\frac{1}{3}+\frac{3}{10}\)\(-\frac{1}{2}\)
=\(\frac{6}{30}+\frac{10}{30}+\frac{9}{30}-\frac{15}{30}=\frac{6+10+9-15}{30}=\frac{10}{30}=\frac{1}{3}\)
\(\left(\frac{9}{16}\right)^{2016}.\left(\frac{16}{9}\right)^{2015}.\frac{4}{3}\)
\(=\left(\frac{9}{16}\right)^{2015}.\left(\frac{16}{9}\right)^{2015}.\frac{9}{16}.\frac{4}{3}\)
\(=\left(\frac{9}{16}.\frac{16}{9}\right)^{2015}.\frac{3}{4}\)
\(=\frac{1.3}{4}=\frac{3}{4}\)
\(\frac{2^7.9^3}{6^5.8^2}=\frac{2^7.\left(3^2\right)^3}{2^5.3^5.\left(2^3\right)^2}=\frac{2^7.3^6}{2^{11}.3^5}=\frac{3}{2^4}=\frac{3}{16}\)