Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}\)
\(3B=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\)
\(\Rightarrow3B-B=1-\dfrac{1}{3^{100}}\)
\(\Rightarrow2B=1-\dfrac{1}{3^{100}}\)
\(0< \dfrac{1}{3^{100}}< 1\Rightarrow0< 1-\dfrac{1}{3^{100}}< 1\)
\(\Rightarrow0< 2B< 1\Rightarrow0< B< \dfrac{1}{2}\Rightarrow\) B không phải số nguyên
Bài 2:
- Thay x=0 vào P(x) ta được:
P(0)=d => d là số lẻ.
- Thay x=1 vào P(x) ta được:
P(1)=a+b+c+d =>a+b+c+d là số lẻ mà d lẻ nên a+b+c là số chẵn.
- Gọi e là nghiệm của P(x), thay e vào P(x) ta được:
P(e)=ae3+be2+ce+d=0
=>ae3+be2+ce=-d
=>e(ae2+be+c)=-d
=>e=\(\dfrac{-d}{ae^2+be+c}\).
Ta thấy: -d là số lẻ, ae2+be+c là số chẵn nên -d không thể chia hết cho
ae2+be+c.
- Vậy P(x) không thể có nghiệm là số nguyên.
a: \(P=2x^2+3xy+y^2=\left(2x+y\right)\left(x+y\right)\)
\(=\left(2\cdot\dfrac{-1}{2}+\dfrac{2}{3}\right)\left(\dfrac{-1}{2}+\dfrac{2}{3}\right)\)
\(=\dfrac{-1}{3}\cdot\dfrac{1}{6}=-\dfrac{1}{18}\)
d: \(Q=\dfrac{-1}{3}x^4y^2=\dfrac{-1}{3}\cdot16\cdot\dfrac{1}{16}=-\dfrac{1}{3}\)
\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
\(\left\{{}\begin{matrix}\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a-b}{c-d}\\\dfrac{a}{c}=\dfrac{b}{d}\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}\left(\dfrac{a}{c}\right)^2=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\\\left(\dfrac{a}{c}\right)^2=\dfrac{ab}{cd}\end{matrix}\right.\)
\(\Rightarrow\dfrac{ab}{cd}=\dfrac{\left(a-b\right)^2}{\left(c-d\right)^2}\)