Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+\frac{1}{5.7}-\frac{1}{6.8}+\frac{1}{7.9}-\frac{1}{8.10}\)
\(\Rightarrow S=\frac{1}{2}\left(1-\frac{1}{3}-\frac{1}{2}+\frac{1}{4}+\frac{1}{3}-\frac{1}{5}-\frac{1}{4}+\frac{1}{6}+\frac{1}{5}-\frac{1}{7}-\frac{1}{6}+\frac{1}{8}+\frac{1}{7}-\frac{1}{9}-\frac{1}{8}+\frac{1}{10}\right)\)
\(\Rightarrow S=\frac{1}{2}\left(1+\frac{1}{10}\right)\)
\(\Rightarrow S=\frac{1}{2}.\frac{11}{10}\)
\(\Rightarrow S=\frac{11}{20}\)
32/2x4+52/4x6+...+992/98x100
=9/8+25/24+...+9801/9800
=1+1/8+1+1/24+...+1+1/9800
=1+1+...+1+1/2.4+1/4.6+...+1/98.100
= 49 + A
với A=1/2.4+1/4.6+...+1/98.100
=1/4(1/1.2+1/2.3+...+1/49.50)
=1/4(1-1/2+1/2-1/3+...+1/49-1/50)
=1/4(1-1/50)
=1/4.49/50
=49/200
ta có:32/2x4+52/4x6+...+992/98x100= 49+A= 49+49/200=9849/200
chúc bạn hok tốt
\(\frac{9}{2.5}+\frac{39}{5.8}+\frac{87}{8.11}+...+\frac{9897}{98.101}\)
\(=1-\frac{1}{2.5}+1-\frac{1}{5.8}+1-\frac{1}{8.11}+...+1-\frac{1}{98.101}\)
\(=1+1+...+1-\left(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{98.101}\right)\) \(\left(\text{33 chữ số 1}\right)\)
\(=33-\frac{1}{3}\left(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{98.101}\right)\)
\(=33-\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{98}-\frac{1}{101}\right)\)
\(=3-\frac{1}{3}\left(\frac{1}{2}-\frac{1}{101}\right)\)
\(=3-\frac{1}{3}-\frac{99}{202}\)
\(=\frac{1319}{606}\)
\(\dfrac{1}{2.4}+\dfrac{1}{4.6}+\dfrac{1}{6.8}+...+\dfrac{1}{40.42}\)
\(=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+...+\dfrac{1}{40}-\dfrac{1}{42}\right)\)
\(=\dfrac{1}{2}.\left(\dfrac{1}{2}-\dfrac{1}{42}\right)\)
\(=\dfrac{1}{2}.\dfrac{10}{21}\)
\(=\dfrac{5}{21}\)
\(#Wendy.Dang\)
\(\dfrac{1}{2\cdot4}+\dfrac{1}{4\cdot6}+\dfrac{1}{6\cdot8}+...+\dfrac{1}{40\cdot42}\)
\(=\dfrac{1}{2}\cdot\left(2\cdot\dfrac{1}{2\cdot4}+\dfrac{1}{4\cdot6}+\dfrac{1}{6\cdot8}+...+\dfrac{1}{40\cdot42}\right)\)
\(=\dfrac{1}{2}\cdot\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+...+\dfrac{2}{40\cdot42}\right)\)
\(=\dfrac{1}{2}\cdot\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-...+\dfrac{1}{40}-\dfrac{1}{42}\right)\)
\(=\dfrac{1}{2}\cdot\left(1-\dfrac{1}{42}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{41}{42}\)
\(=\dfrac{41}{84}\)
\(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{98.100}\)
\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{98}-\frac{1}{100}\)
\(=\frac{1}{2}-\frac{1}{100}\)
\(=\frac{49}{100}\)
Ta có:
\(A=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+....+\frac{1}{98.100}\)
\(\Rightarrow2A=\frac{2}{2.4}+\frac{2}{4.6}+....+\frac{2}{98.100}\)
\(\Rightarrow2A=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+....+\frac{1}{98}-\frac{1}{100}\)
\(\Rightarrow2A=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)
\(\Rightarrow A=\frac{49}{100}\div2=\frac{49}{200}\)
Vậy giá trị của biểu thức là \(\frac{49}{200}\)
1x4+2x5+...+277x280
= ( 1 + 1+ ... + 277) x ( 4 + 5 + .. + 280)
= 38503 x 39334 = 1514477002
mình mình k lại nha!
Từ 1x4+2x5+...+277x280
=(1+2+...+277)x(4+5+..+280)(Tính tổng các dãy số,Ta được)
=38503x39334=1514477002