K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2015

 

Đặt BT trên là A ta có

\(3A=3+3^2+3^3+3^4+...+3^{2000}+3^{2001}\)

\(2A=3A-A=3^{2001}-1\)

\(A=\frac{3^{2001}-1}{2}\)

8 tháng 7 2015

A= 1+3+32+33+...+32000

3A= 3+32+33+34+.. .+32001

3A-A=(3+32+33+34+.. .+32001)-(1+3+32+33+...+32000)

2A= 32001-1

A =(32001-1) :2

 

 

22 tháng 6 2023

\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{99}}\)

\(\Rightarrow\dfrac{A}{3}=\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\)

\(\Rightarrow A-\dfrac{A}{3}=\dfrac{2A}{3}=\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^2}+\dfrac{1}{3^3}+\dfrac{1}{3^4}+...+\dfrac{1}{3^{100}}\right)\)

\(\Rightarrow\dfrac{2A}{3}=\left(\dfrac{1}{3^2}-\dfrac{1}{3^2}\right)+\left(\dfrac{1}{3^3}-\dfrac{1}{3^3}\right)+...+\left(\dfrac{1}{3^{99}}-\dfrac{1}{3^{99}}\right)+\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)=\dfrac{1}{3}-\dfrac{1}{3^{100}}\)

\(\Rightarrow2A=3\cdot\left(\dfrac{1}{3}-\dfrac{1}{3^{100}}\right)\)

\(\Rightarrow\text{A}=\dfrac{1-\dfrac{1}{3^{99}}}{2}\)

\(\Rightarrow A=\dfrac{1}{2}-\dfrac{1}{2.3^{99}}< \dfrac{1}{2}\)

29 tháng 12 2020

S = 1 + 3 + 32 + 33 +... + 32014

3S = 3 + 32 + 33 + 34 + ... + 32015

3S - S = ( 3 + 32 + 33 + 34 + ... + 32015) - (1 + 3 + 32 + 33 +... + 32014)

2S = 32015 - 1

S = \(\dfrac{3^{2015}-1}{2}\)

29 tháng 12 2020

Mình vẫn không hiểu lắm!

 

1 tháng 8 2023

\(D=1+3+3^2+3^3+3^4+...+3^{2022}\)

\(3D=3.\left(1+3+3^2+3^3+3^4+...+3^{2022}\right)\)

\(3D=3+3^2+3^3+3^4+3^5+...+3^{2023}\)

\(3D-D=\left(3+3^2+3^3+3^4+3^5+...+3^{2023}\right)-\left(1+3+3^2+3^3+3^4+...+3^{2022}\right)\)

\(2D=\left(3^{2023}-1\right)\)

\(D=\left(3^{2023}-1\right):2\)

3D=3+3^2+...+3^2023

=>2D=3^2023-1

=>\(D=\dfrac{3^{2023}-1}{2}\)

16 tháng 8 2023

Bài 1:

13 + 23 = 1 + 8 = 9 = 32 (là một số chính phương)

13 + 23 + 33 = 1 + 8 + 27 = 36 = 62 (là một số chính phương)

13 + 23 + 33 + 43 = 1 + 8 + 27 + 64 = 100 = 102 (là số cp)

13 + 23 + 33 + 43 + 53 = 1 + 8 + 27 + 64 + 125 = 225 = (15)2 là số cp

 

16 tháng 8 2023

Bài 2:

1262 + 1 = \(\overline{..6}\) + 1 = \(\overline{...7}\) (không phải số chính phương)

100! + 8 = \(\overline{...0}\) + 8 = \(\overline{...8}\) (không phải là số chính phương)

1012 - 3 \(\overline{..01}\) - 3 = \(\overline{...8}\) (không phải là số chính phương)

107 + 7 = \(\overline{..0}\) + 7 = \(\overline{..7}\) (không phải là số chính phương)

11 + 112 + 113 = \(\overline{..1}\)\(\overline{..1}\)\(\overline{..1}\) = \(\overline{...3}\) (không phải số chính phương)

 

11 tháng 3 2022

Đây Là Lớp Mấy

22 tháng 7 2015

S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)

Mà : (1/31+1/32+1/33+...+1/40) > 1/40 x 10 = 1/4 (gồm 10 số hạng)

Tương tự : (1/41 + 1/42 + ...+ 1/50) > 1/5 ;   (1/51 + 1/52+...+1/59+1/60) > 1/6

S > 1/4 + 1/5 + 1/6.

Trong khi đó (1/4 + 1/5 + 1/6) > 3/5

=>S > 3/5                             (1)

 

S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)

Mà : (1/31+1/32+1/33+...+1/40) < 1/31 x 10 = 10/30 = 1/3 (gồm 10 số hạng)

=> S <  4/5                             (2)

Từ (1) và (2) => 3/5 <S<4/5

22 tháng 7 2015

không thiếu đề ,đúng đề

4 tháng 7 2023

\(A=3+3^2+3^3+...+3^{2004}\)

\(\Rightarrow3A=3\left(3+3^2+3^3+...+3^{2004}\right)\)

\(\Rightarrow3A=3^2+3^3+3^4+...+3^{2005}\)

\(\Rightarrow3A-A=\left(3^2+3^3+3^4+...+3^{2005}\right)-\left(3+3^2+3^3+3^4+...+3^{2004}\right)\)

\(\Rightarrow2A=\left(3^2-3^2\right)+\left(3^3-3^3\right)+\left(3^4-3^4\right)+...+\left(3^{2004}-3^{2004}\right)+\left(3^{2005}-3\right)\)

\(\Rightarrow2A=3^{2005}-3\)

\(\Rightarrow A=\dfrac{3^{2005}+3}{2}\)