K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2019

\(\frac{1}{2.x}-\frac{1}{1.2}-\frac{1}{2.3}-\frac{1}{3.4}-...-\frac{1}{45.46}=-2\)

\(\frac{1}{2.x}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{45.46}\right)=-2\)

\(\frac{1}{2.x}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{45}-\frac{1}{46}\right)=-2\)

\(\frac{1}{2.x}-\left(1-\frac{1}{46}\right)\)

\(\frac{1}{2.x}-\frac{45}{46}=-2\)

\(\frac{1}{2.x}=-2+\frac{45}{46}\)

\(\frac{1}{2.x}=\frac{-47}{46}\)

\(2x=\frac{46}{-47}\)

\(x=\frac{46}{-47}:2=\frac{-23}{47}\)

\(\frac{1}{2.x}-\frac{1}{1.2}-\frac{1}{2.3}-......-\frac{1}{45.46}=-2\)2

\(\frac{1}{2.x}-\left(\frac{1}{1.2}+\frac{1}{2.3}+.......+\frac{1}{45.46}\right)=-2\)

Đặt \(A=\frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{45.46}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{45}-\frac{1}{46}\)

\(A=1-\frac{1}{46}=\frac{45}{46}\)

Ta có: \(\frac{1}{2.x}-\frac{45}{46}=-2\)

\(\frac{1}{2.x}=\frac{-47}{46}\)

\(\frac{-47}{-94.x}=\frac{-47}{46}\)

\(\Rightarrow x=\frac{-23}{47}\)

4 tháng 6 2020

\(75\%-1\frac{1}{2}+0,5:\frac{5}{12}-\frac{-1^2}{2}\)

\(=\frac{75}{100}-\frac{3}{2}+\frac{5}{10}.\frac{12}{5}-\frac{1}{2}\)

\(=\frac{3}{4}-\frac{3}{2}+\frac{6}{5}-\frac{1}{2}\)

\(=\frac{15}{20}-\frac{30}{20}+\frac{24}{20}-\frac{10}{20}\)

\(=\frac{15-30+24-10}{20}\)

\(=\frac{-1}{20}\).

4 tháng 2 2018

Ta có: 1/1.2+1/2.3+1/3.4+...+1/x(x+1)=2/3

=> 1-1/2+1/2-1/3+1/3-1/4+...+1/x-1/x+1=2/3

=>1-1/x+1=2/3

=>1/x+1=1/3

=>3=x+1

=>x=2

4 tháng 2 2018

Ta có\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{x\left(x+1\right)}=\frac{2}{3}\)

=>\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2}{3}\)

=>\(1-\frac{1}{x+1}=\frac{2}{3}\)

=>\(\frac{1}{x+1}=1-\frac{2}{3}\)

=>\(\frac{1}{x+1}=\frac{1}{3}\)

=>\(x+1=3\)

=>\(x=2\)

10 tháng 3 2023

a)

`1/1-1/2`

`=2/2-1/2`

`=1/2`

b)

`1/(1*2)+1/(2*3)`

`=1/1-1/2+1/2-1/3`

`=1/1-1/3`

`=3/3-1/3`

`=2/3`

c)

\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{99\cdot100}\\ =\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\\ =\dfrac{1}{1}-\dfrac{1}{100}\\ =\dfrac{99}{100}\)

d) 

\(\dfrac{3}{1\cdot2}+\dfrac{3}{2\cdot3}+...+\dfrac{3}{99\cdot100}\) đề phải như thế này chứ nhỉ?

\(=\dfrac{1\cdot3}{1\cdot2}+\dfrac{1\cdot3}{2\cdot3}+...+\dfrac{1\cdot3}{99\cdot100}\\ =3\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{99\cdot100}\right)\\ =3\left(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\\ =3\left(\dfrac{1}{1}-\dfrac{1}{100}\right)\\ =3\cdot\dfrac{99}{100}\\ =\dfrac{297}{100}\)

 

30 tháng 1 2023

 Tham khảo:

A=1.2+2.3+3.4+...+2013.2014

3A = 1.2.3 + 2.3.3 + 3.4.3 +...+ 2013.2014.3

Mà: 1.2.3 = 1.2.3

2.3.3 = 2.3.4 - 2.3.1

3.4.3 = 3.4.5 - 3.4.2

2012.2013.3  = 2012.2013.2014 - 2012.2013.2011

2013.2014.3 = 2013.2014.2015 - 2013.2014.2012

=> 3S = 2013.2014.2015

=> A = 2013.2014.2015 / 3 = 2723058910

 

20 tháng 7 2018

12(x - 1) = 48

=> x - 1 = 48 : 12

=> x - 1 = 4

=> x = 4 + 1

=> x = 5

Vậy x = 5

\(\frac{1}{2}+x\div\frac{1}{3}=3\frac{1}{2}\)

\(\Rightarrow\frac{1}{2}+x\div\frac{1}{3}=\frac{7}{2}\)

\(\Rightarrow x\div\frac{1}{3}=\frac{7}{2}-\frac{1}{2}\)

\(\Rightarrow x\div\frac{1}{3}=3\)

\(\Rightarrow x=3.\frac{1}{3}\)

\(\Rightarrow x=1\)

Vậy x = 1

(x + 1) + (x + 2) + ... + (x + 10) = 105

=> (x + x + ... + x) + (1 + 2 + ... + 10) = 105

      có 10 số x            có 10 số hạng

=> 10x + (1 + 10) . 10 : 2 = 105

=> 10x + 11 . 10 : 2 = 105

=> 10x + 110 : 2 = 105

=> 10x + 55 = 105

=> 10x = 105 - 55

=> 10x = 50

=> x = 50 : 10

=> x = 5

Vậy x = 5

25 tháng 5 2019

12 . ( x - 1 ) = 48

x - 1 = 48 - 12

x - 1 = 36

x = 36 + 1

x = 37

~ Hok tốt ~

\(\Leftrightarrow1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{2021}{2022}\)

\(\Leftrightarrow1-\dfrac{1}{x+1}=\dfrac{2021}{2022}\)

\(\Leftrightarrow\dfrac{1}{x+1}=\dfrac{1}{2022}\)

=>x+1=2022

hay x=2021

31 tháng 1 2016

\(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{\left(x-1\right)x}=2\)

\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+......+\frac{1}{x-1}-\frac{1}{x}=2\)

suy ra \(1-\frac{1}{x}=2\)

hay \(\frac{x-1}{x}=2\) .suy ra x-1=2x .tính ra ta có x=-1