K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2015

Công thức là:1/4.(n-2)(n-1)n(n+1)

=>1.2.3+...+100.101.102=1/4.100.101.102.103

=25.101.102.103

=26527650

24 tháng 9 2021

4A = 4.[1.2.3 + 2.3.4 + 3.4.5 + … + (n – 1).n.(n + 1)]

4A = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 + … + (n – 1).n.(n + 1).4

4A = 1.2.3.4 + 2.3.4.(5 – 1) + 3.4.5.(6 – 2) + … + (n – 1).n.(n + 1).[(n + 2) – (n – 2)]

4A = 1.2.3.4 + 2.3.4.5 – 1.2.3.4 + 3.4.5.6 – 2.3.4.5 + … + (n – 1).n(n + 1).(n + 2) – (n – 2).(n – 1).n.(n + 1)

4A = (n – 1).n(n + 1).(n + 2)

A = (n – 1).n(n + 1).(n + 2) : 4.

24 tháng 9 2021

cau a thi sao ha ban ? 

17 tháng 10 2017

1.2.3 = 1/4 . (1.2.3.4 - 0.1.2.3)

2.3.4 = 1/4 . (2.3.4.5 - 1.2.3.4)

3.4.5 = 1/4 . (3.4.5.6 - 2.3.4.5)

.................

99.100.101 = 1/4 . (99.100.101.102 - 98.99.100.101)

C = 1.2.3+2.3.4+3.4.5+.........+99.100.101

C= 1/4 . (99.100.101.102 - 98.99.100.101)

CHUC BN HOK GIỎI!

17 tháng 10 2017

25497450

18 tháng 8 2019

😁

22 tháng 10 2019

A= 1.2.3 +2.3.4 + 3.4.5 + ... + 97.98.99

=> 4A = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 + ... + 97.98.99.4

=> 4A =1.2.3.4 + 2.3.4.(5-1) + 3.4.5(6-2) + ...+ 97.98.99( 100 - 96)

=> 4A = 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 + 97.98.99.100 - 96.97.98.99.

=>4A= 97.98.99.100

=> A= (97.98.99.100)/ 4 = 97.98.99.25

22 tháng 10 2019

Em có thể tham khảo cách làm tương tự như link: 

Cách làm nhé. Đừng chép hết. Đề bài của bạn khác 1 chút so với của em.

Câu hỏi của Ngô Hồng Thuận - Toán lớp 7 - Học toán với OnlineMath

21 tháng 4 2016

A=1/1-1/2-1/3+1/2-1/3-1/4+...+1/37-1/38-1/39 

=1/1-1/39

=39/39-1/39 =38/39

Làm đại ko biết đúng hay sai hên xui nha=v='

2 tháng 11 2019

Đặt A=1.2.3+2.3.4+3.4.5+........+48.49.50

     4A=1.2.3.4+2.3.4.4+..........+48.49.50.4

         =1.2.3.4+2.3.4.(5-1)+.........+48.49.50.(51-47)

         =1.2.3.4+2.3.4.5-1.2.3.4+...........+48.49.50.51-47.48.49.50

         =48.49.50.51

         =5997600

       A=1499400

Vậy A=1499400

2 tháng 11 2019

Đặt \(A=1\cdot2\cdot3+2\cdot3\cdot4+........+48\cdot49\cdot50\)

\(\Rightarrow4A=1\cdot2\cdot3\cdot4+2\cdot3\cdot4\cdot4+......+48\cdot49\cdot50\cdot4\)

\(=1\cdot2\cdot3\cdot4+2\cdot3\cdot4\cdot\left(5-1\right)+..........+48\cdot49\cdot50\cdot\left(51-47\right)\)

\(=1\cdot2\cdot3\cdot4+2\cdot3\cdot4\cdot5-1\cdot2\cdot3\cdot4+......+48\cdot49\cdot50\cdot51-47\cdot48\cdot49\cdot50\)

\(=48\cdot49\cdot50\cdot51\)

\(\Rightarrow A=\frac{48\cdot49\cdot50\cdot51}{4}\)

4 tháng 4 2015

Ta có nhận xét: \(\frac{2}{k\left(k+1\right)\left(k+2\right)}=\frac{1}{k\left(k+1\right)}-\frac{1}{\left(k+1\right)\left(k+2\right)}\)

Áp dụng tính A ta có:

\(2.A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{2014.2015.2016}\)

\(\Rightarrow2.A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{2014.2015}-\frac{1}{2015.2016}\)

\(\Rightarrow2.A=\frac{1}{1.2}-\frac{1}{2015.2016}=\frac{2015.1008-1}{2015.2016}\)

\(\Rightarrow A=\left(\frac{2015.1008-1}{2015.2016}\right):2\)