Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(D=\dfrac{1}{2000.1999}-\dfrac{1}{1999.1998}-\dfrac{1}{1998.1997}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)
\(D=\dfrac{1}{1999.2000}-\left(\dfrac{1}{1998.1999}+\dfrac{1}{1997.1998}+...+\dfrac{1}{2.3}+\dfrac{1}{1.2}\right)\)\(D=\dfrac{1}{1999.2000}-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+....+\dfrac{1}{1997.1998}+\dfrac{1}{1998.1999}+\dfrac{1}{1999.2000}\right)\)
\(D=\dfrac{1}{1999.2000}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+....+\dfrac{1}{1997}-\dfrac{1}{1998}+\dfrac{1}{1998}-\dfrac{1}{1999}+\dfrac{1}{1999}-\dfrac{1}{2000}\right)\)\(D=\dfrac{1}{1999.2000}-\dfrac{1999}{2000}\)
Án vào đây
Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
A=-1-2+3+4-5-6+7+8-...-1997-1998+1999+2000
A=(0-1-2+3)+(4-5-7+7)+...+(1996-1997-1998+1999)+2000
A=0+0+...+0+2000
A=2000
1+2-3-4+5+6-7-8+...+1997+1998-1999-2000
=(1+2-3-4)+...+(1997+1998-1999-2000)
=(-4)+(-4)+...+(-4)
=(-4)x500
=(-2000)
B=1+(-2)+(-3)+4+5+-6+-7+8+...+1997+(1998)+(-1999)+2000
Giải:Ta có:B=1-2-3+4+..........+1997-1998-1999+2000
=(1-2-3+4)+(5-6-7+8)+.........+(1997-1998-1999+2000)
=0+0+............+0+0
=0
1/2000*1999 - 1/1999*1998 - 1/1998*1997 - ... - 1/2*1
= 1/1999 - 1/2000 - (1/1998 - 1/1999) - (1/1997 - 1/1998) - ... - (1 - 1/2)
= 1/1999 - 1/2000 - 1/1998 + 1/1999 - 1/1997 +1/1998 - .... - 1 + 1/2
= 1/1999 + 1/1999 - 1/2000 - 1/1998 + 1/1998 - 1/1997 +1/1997 - .... - 1/2 +1/2 - 1
= 1/1999 + 1/1999 - 1/2000 - 1
= 2/1999 - 1 - 1/2000
= -1997/1999 - 1/2000
= -2000 - 1997/1997*2000
=-3997/3994000
=
A =-1 -2 +3+4 -5 -6+7+8- 9- 10+11 +12-...- 1997- 1998 +1999+ 2000
= (-1-2+3+4) + (-5-6+7+8) + (-9-10+11+12) +....+ (-1997-1998+1999+2000)
= 4 + 4 + 4 +... +4 (Số bộ 4 số hạng: (2000 - 4):4 + 1= 500)
= 4 x 500
= 2000
\(a.\left(\frac{x+1}{2000}+1\right)+\left(\frac{x+2}{1999}+1\right)+\left(\frac{x+3}{1998}+1\right)+\left(\frac{x+4}{1997}+1\right)=0\)
\(=\frac{x+2001}{2000}+\frac{x+2001}{1999}+\frac{x+2001}{1998}+\frac{x+2001}{1997}=0\)
\(=\left(x+2001\right).\left(\frac{1}{2000}+\frac{1}{1999}+\frac{1}{1998}+\frac{1}{1997}\right)=0\)
\(=>x+2001=0\)
\(x=-2001\)
\(b.\left(\frac{x+1}{1999}-1\right)+\left(\frac{x+2}{2000}-1\right)+\left(\frac{x+3}{2001}-1\right)=\left(\frac{x+4}{2002}-1\right)+\left(\frac{x+5}{2003}-1\right)\)\(+\left(\frac{x+6}{2004}-1\right)\)
\(\frac{x+1998}{1999}+\frac{x+1998}{2000}+\frac{x+1998}{2001}=\frac{x+1998}{2002}+\frac{x+1998}{2003}+\frac{x+1998}{2004}\)
\(\frac{x+1998}{1999}+\frac{x+1998}{2000}+\frac{x+1998}{2001}-\frac{x+1998}{2002}-\frac{x+1998}{2003}-\frac{x+1998}{2004}=0\)
\(\left(x+1998\right).\left(\frac{1}{1999}+\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}-\frac{1}{2004}\right)=0\)
\(=>x+1998=0\)
\(x=-1998\)
dễ quá!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Ta có Đặt B = \(\frac{1999}{1}+\frac{1998}{2}+...+\frac{1}{1999}\)(1999 số hạng)
\(=\left(1+1+1+...+1\right)+\frac{1998}{2}+\frac{1997}{3}+...+\frac{1}{1999}\)(1999 số hạng 1)
\(=1+\left(\frac{1998}{2}+1\right)+\left(\frac{1997}{3}+1\right)+...+\left(\frac{1}{1999}+1\right)\)(1998 cặp số)
= \(\frac{2000}{2}+\frac{2000}{3}+...+\frac{2000}{1999}+\frac{2000}{2000}\)
= \(2000\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1999}+\frac{1}{2000}\right)\)
Khi đó \(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}{\frac{1999}{1}+\frac{1998}{2}+...+\frac{1}{1999}}=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}}{2000\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2000}\right)}=\frac{1}{2000}\)