Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ĐK:5\left(x-2\right)^2\ne0\Leftrightarrow x-2\ne0\Leftrightarrow x\ne2\)
Đây chắc chắn là 1 hệ pt không giải được
Lần lượt lấy (trên + dưới) và lấy (dưới - trên) được 1 hệ mới, sau đó chia vế cho vế và đặt \(\dfrac{x}{y}=t\) sẽ đưa về 1 pt không thể phân tích thành nhân tử, đồng nghĩa không thể giải hệ đã cho
bài ni đúng đề thầy ạ !
nghiệm của hệ pt là :\(\left(x,y\right)=\left\{\dfrac{1+\sqrt[5]{3}}{2},\dfrac{\sqrt[5]{3}-1}{2}\right\}\)
a.
Với \(y=0\) không phải nghiệm
Với \(y\ne0\Rightarrow\left\{{}\begin{matrix}3x+2=\dfrac{5}{y}\\2x\left(x+y\right)+y=\dfrac{5}{y}\end{matrix}\right.\)
\(\Rightarrow3x+2=2x\left(x+y\right)+y\)
\(\Leftrightarrow2x^2+\left(2y-3\right)x+y-2=0\)
\(\Delta=\left(2y-3\right)^2-8\left(y-2\right)=\left(2y-5\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-2y+3+2y-5}{4}=-\dfrac{1}{2}\\x=\dfrac{-2y+3-2y+5}{4}=-y+2\end{matrix}\right.\)
Thế vào pt đầu ...
Câu b chắc chắn đề sai
\(\dfrac{1}{x-1}=\dfrac{x+1}{\left(x-1\right)\left(x+1\right)};\dfrac{2}{x+1}=\dfrac{2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\)
\(\lim\limits_{x\rightarrow2}\left(\dfrac{1}{\left(x-2\right)\left(3x+2\right)}+\dfrac{1}{\left(x-2\right)\left(x-10\right)}\right)=\lim\limits_{x\rightarrow2}\dfrac{1}{\left(x-2\right)}\left(\dfrac{x-10+3x+2}{\left(3x+2\right)\left(x-10\right)}\right)\)
\(=\lim\limits_{x\rightarrow2}\dfrac{4\left(x-2\right)}{\left(x-2\right)\left(3x+2\right)\left(x-10\right)}=\lim\limits_{x\rightarrow2}\dfrac{4}{\left(3x+2\right)\left(x-10\right)}=-\dfrac{1}{16}\)