Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(\frac{3}{7}\right)^{21}:\left(\frac{9}{49}\right)^6=\left(\left(\frac{3}{7}\right)^2\right)^{10}.\frac{3}{7}:\left(\frac{9}{49}\right)^6=\left(\frac{9}{49}\right)^{10}.\frac{3}{7}:\left(\frac{9}{49}\right)^6\)
\(=\left(\left(\frac{9}{49}\right)^{10}:\left(\frac{9}{49}\right)^6\right).\frac{3}{7}=\left(\frac{9}{49}\right)^{10-6}.\frac{3}{7}=\left(\frac{9}{49}\right)^4.\frac{3}{7}=\left(\left(\frac{3}{7}\right)^2\right)^4.\frac{3}{7}\)
\(=\left(\frac{3}{2}\right)^8.\frac{3}{7}=\left(\frac{3}{2}\right)^9\)
\(b,3-\left(-\frac{6}{7}\right)^0+\left(\frac{1}{2}\right)^2:2=3-1+\left(\frac{1}{2}\right)^2.\frac{1}{2}=2+\left(\frac{1}{2}\right)^3=2+\frac{1}{6}=2\frac{1}{6}\)
a) Ta có: \(\left(\frac{1}{2}\right)^m=\frac{1}{32}\)
Mà \(\frac{1}{32}=\left(\frac{1}{2}\right)^5\)
\(\Rightarrow\left(\frac{1}{2}\right)^m=\left(\frac{1}{2}\right)^5\Rightarrow m=5\)
b)Ta có: \(\frac{343}{125}=\left(\frac{7}{5}\right)^3\)
Mà \(\left(\frac{7}{5}\right)^3=\left(\frac{7}{5}\right)^n\Rightarrow n=3\)
\(a)\) \(\left(\frac{1}{2}\right)^m=\frac{1}{32}\)
\(\Leftrightarrow\)\(\left(\frac{1}{2}\right)^m=\frac{1^5}{2^5}\)
\(\Leftrightarrow\)\(\left(\frac{1}{2}\right)^m=\left(\frac{1}{2}\right)^5\)
\(\Leftrightarrow\)\(m=5\)
Vậy \(m=5\)
\(b)\) \(\frac{343}{125}=\left(\frac{7}{5}\right)^n\)
\(\Leftrightarrow\)\(\frac{7^3}{5^3}=\left(\frac{7}{5}\right)^n\)
\(\Leftrightarrow\)\(\left(\frac{7}{5}\right)^3=\left(\frac{7}{5}\right)^n\)
\(\Leftrightarrow\)\(n=3\)
Vậy \(n=3\)
Chúc bạn học tốt ~
\(\left(\frac{1}{2}\right)^3.\frac{1}{2}=\frac{1}{8}.\frac{1}{2}=\frac{1}{16}=\left(\frac{1}{2}\right)^4\)
Đáp án đúng là C
M = 22010-(22009 + 22008+....+21+20
Đặt A =( 22009+22008+...21 +20)
Suy ra 2A = 22010+22009+22008+...22+2
Suy ra 2A-A = ( 22010+22009+22008+...+22+2) - (22009+ 22008+...+21+20)
Suy ra A= 22010-20
Suy ra M = 22010-A=22010 - 22010+20=1
Vậy M=1
Đúng nha
\(\left(\frac{1}{2}\right)^{40}=\left(\frac{1}{2}\right)^{10\cdot4}=\left(\frac{1}{16}\right)^{10}\)
Mà ta có
\(\left(\frac{1}{32}\right)^{10}< \left(\frac{1}{16}\right)^{10}\)
\(\Rightarrow\left(\frac{1}{2}\right)^{40}>\left(\frac{1}{32}\right)^{10}\)
\(\dfrac{1}{2019^2}-\dfrac{1}{2020^2}=\dfrac{2020^2-2019^2}{2019^2\cdot2020^2}\\ =\dfrac{\left(2020-2019\right)\left(2020+2019\right)}{2019^2\cdot2020^2}=\dfrac{4039}{2019^2\cdot2020^2}\)