chứng tỏ rằng các phân số 4n+1/6n+1laf phân số tối giản với mọi số tự nhiên n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi UCLN(4n+1,6n+1) là d
Ta có: 4n+1 chia hết cho d => 3(4n+1) chia hết cho d => 12n + 3 chia hết cho d
6n+1 chia hết cho d => 2(6n+1) chia hết cho d => 12n + 2 chia hết cho d
=> 12n + 3 - (12n + 2) chia hết cho d
=> 1 chia hết cho d => d = 1
=> UCLN(4n+1,6n+1) = 1
Vậy \(\frac{4n+1}{6n+1}\)là p/s tối giản
a,Gọi ƯCLN(n+3,2n+7)=d
n+3⋮d ⇒2n+6⋮d
2n+7⋮d ⇒2n+7⋮d
(2n+7)-(2n+6)⋮d
1⋮d ⇒ƯCLN(n+3,2n+7)=1
Vậy phân số n+3/2n+7 là phân số tối giản
a,Gọi ƯCLN(3n+7,6n+15)=d
3n+7⋮d ⇒6n+14⋮d
6n+15⋮d ⇒6n+15⋮d
(6n+15)-(6n+14)⋮d
1⋮d ⇒ƯCLN(3n+7,6n+15)=1
Vậy phân số 3n+7/6n+15 là phân số tối giản
Gọi ƯCLN(4n+7;6n+11)=d . Ta có
\(4n+7⋮d;6n+11⋮d\)
\(\Rightarrow6.\left(4n+7\right)⋮d;4.\left(6n+11\right)⋮d\)
\(\Rightarrow6.\left(4n+7\right)-4.\left(6n+11\right)⋮d\)
\(\Rightarrow24n+42-24n-41⋮d\)
\(\Rightarrow1⋮d\) hay \(d=1\)
Vậy \(\frac{4n+7}{6n+11}\) là phân số tối giản
Đặt d = ƯCLN(5n+1, 6n+1) thì
5n+1 chia hết cho d, 6n+1 chia hết cho d
=> 6(5n+1) - 5(6n+1) chia hết cho d
=> 1 chia hết cho d
=> d thuộc Ư(1) = {1; -1} => d = 1
Vậy 5n+1/6n+1 tối giản với mọi STN n
Gọi d là UCLN của 5n+1 và 6n+1
\(\Rightarrow5n+1⋮d\)và \(6n+1⋮d\)
Hay \(6\left(5n+1\right)⋮d\)và \(5\left(6n+1\right)⋮d\)
\(\Leftrightarrow30n+6⋮d\)và \(30n+5⋮d\)
\(\Rightarrow30n+6-\left(30n+5\right)⋮d\)
Hay \(1⋮d\Rightarrow d=1hoac\left(-1\right)\Rightarrow dpcm\)
Ai thấy đúng k nha
Gọi \(d=ƯC\left(3n+2;6n+5\right)\) với \(d\ge1;d\in N\)
\(\Rightarrow\left\{{}\begin{matrix}3n+2⋮d\\6n+5⋮d\end{matrix}\right.\)
\(\Rightarrow6n+5-2\left(3n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
\(\Rightarrow3n+2\) và \(6n+5\) nguyên tố cùng nhau
Hay P tối giản
Gọi UCLN(2n + 3; 4n + 5) là d (d thuộc N*)
=> 2n + 3 chia hết cho d => 4n + 6 chia hết cho d => 4n + 5 + 1 chia hết cho d
và 4n + 5 chia hết cho d
=> 1 chia hết cho d
=> d = 1 (Vì d thuộc N*)
=> UWCLN(2n + 3; 4n + 5) = 1
=> 2n + 3/4n + 5 là phân số tối giản với mọi số tự nhiên n
Vậy,........
Gọi d là ƯCLN(4n+1,6n+1)
\(\Rightarrow\hept{\begin{cases}4n+1⋮d\\6n+1⋮d\end{cases}\Rightarrow\hept{\begin{cases}6\left(4n+1\right)⋮d\\4\left(6n+1\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}24n+6⋮d\\24n+4⋮d\end{cases}}}\)
\(\Rightarrow\left(24n+6\right)-\left(24n+4\right)⋮d\)
\(\Rightarrow24n+6-24n-4⋮d\)
\(\Rightarrow\left(24n-24n\right)+\left(6-4\right)⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d=\left\{1;2\right\}\)
Mà 4n+1 không chia hết cho 2
6n+1 không chia hết cho 2
\(\Rightarrow d=1\)
Vậy \(\frac{4n+1}{6n+1}\)là phân số tối giản
Gọi d là ước chung của 4n+1 và 6n+1. (d€ N*)
\(\Rightarrow4n+1⋮d\) \(\orbr{\begin{cases}\Rightarrow3.\left(4n+1\right)⋮d\\\Rightarrow2.\left(6n+1\right)⋮d\end{cases}}\)
\(\Rightarrow6n+1⋮d\)
\(\Rightarrow3.\left(4n+1\right)-2.\left(6n+1\right)⋮d\)
\(12n+3-12n-2⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy phân số\(\frac{4n+1}{6n+1}\) là phân số tối giản