Chứng minh \(a^2+9b^2+c^2+9,5>2a+12b+4c\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dấu ''='' k xảy ra nên chỉ cm đc > hơn thôi nhé
\(a^2+9b^2+c^2+9,5>2a+12b+4c\)
\(\Leftrightarrow\left(a^2-2a+1\right)+\left(9b^2-12b+4\right)+\left(c^2-4c+4\right)>0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(3b-2\right)^2+\left(c-2\right)^2+0,5>0\) --> luôn đúng
-->đpcm
a2-2a+1+4b2-12b+9+3c2-6c+3+1>0
(luôn đúng)
BĐT ban đầu đúng
Ta có:
\(a^2+9b^2+c^2+\dfrac{19}{2}-2a-12b-4c=a^2-2a+1+9b^2-12b+4+c^2-4c+4+\dfrac{1}{2}=\left(a-1\right)^2+\left(3b-2\right)^2+\left(c-2\right)^2+\dfrac{1}{2}>0\left(1\right)\)Vì (1) luôn đúng nên \(a^2+9b^2+c^2+\dfrac{19}{2}>2a+12b+4c\)
\(\Leftrightarrow a^2-2a+1+4b^2-12b+9+3c^2-6c+3+1>0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(2b-3\right)^2+3\left(c-1\right)^2+1>0\) (luôn đúng)
\(\Rightarrow\) BĐT ban đầu đúng