Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\left(a^2+4b^2+3c^2\right)-\left(20a+12b-6c-14\right)\)
\(=a^2+4b^2+3c^2-20a-12b-6c-14\)
\(=\left(a^2-2.a.10+100\right)+\left[\left(2b\right)^2-2.2b.3+9\right]+3\left(c^2+2c+1\right)-98\)
\(=\left(a-10\right)^2+\left(2b-3\right)^2+3\left(c+1\right)^2-98\ge-98\)
Vậy đề bài vô lý
\(\left(a-1\right)^2\ge0\Rightarrow a^2+1-2a\ge0\Rightarrow a^2+1\ge2a\left(1\right)\)
\(\left(2b-3\right)^2\ge0\Rightarrow4b^2+9-12b\ge0\Rightarrow4b^2+9\ge12b\left(2\right)\)
\(\left(c\sqrt[]{3}-\sqrt[]{3}\right)^2\ge0\Rightarrow3c^2+3-6c\ge0\Rightarrow3c^2+3\ge6c\left(3\right)\)
\(\left(1\right)+\left(2\right)+\left(3\right)\Rightarrow a^2+1+4b^2+9+3c^2+3\ge2a+12b+6c\)
\(\Rightarrow a^2+4b^2+3c^2+1+9+3\ge2a+12b+6c\)
\(\Rightarrow a^2+4b^2+3c^2+13\ge2a+12b+6c\)
\(\Rightarrow a^2+4b^2+3c^2\ge2a+12b+6c-13\)
mà \(2a+12b+6c-13>2a+12b+6c-14\)
\(\Rightarrow a^2+4b^2+3c^2>2a+12b+6c-14\)
\(\Rightarrow dpcm\)
Bạn lạ ghê cho đề mà không nêu yêu cầu lấy gì mọi người giải được.
chuyển 2a + 4b + 6c sang vế trái ta được:
a^2 + b^2 + c^2 -2a -4b -6c + 14 =0
<=> a^2 -2a + 1 + b^2 - 4b + 4 + c^2 - 6c +9 = 0
<=> (a-1)^2 + (b-2)^2 + (c-3)^2 = 0
=> (a - 1)^2 = 0 a - 1 = 0 a = 1
(b - 2)^2 = 0 <=> b - 2 = 0 <=> b = 2
(c - 3)^2 = 0 c - 3 = 0 c = 3
=> a + b + c = 1 + 2 + 3 = 6
Mình trình bày không được đẹp, bạn thông cảm nha =)
\(a^2+b^2+c^2+14-2a-4b-6c=0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-2\right)^2+\left(c-3\right)^2=0\)
mà \(\left(a-1\right)^2\ge0;\left(b-2\right)^2\ge0;\left(c-3\right)^2\ge0\)nên
\(\left\{{}\begin{matrix}a-1=0\\b-2=0\\c-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\\c=3\end{matrix}\right.\)
\(a^2+b^2+c^2+14=2a+4b+6c\)
\(a^2-2a+b^2-4b+c^2-6c+14=0\)
\(a^2-2\times a\times1+1^2-1^2+b^2-2\times b\times2+2^2-2^2+c^2-2\times c\times3+3^2-3^2+14=0\)
\(\left(a-1\right)^2+\left(b-2\right)^2+\left(c-3\right)^2=0\)
\(\left(a-1\right)^2\ge0\)
\(\left(b-2\right)^2\ge0\)
\(\left(c-3\right)^2\ge0\)
\(\Rightarrow\left(a-1\right)^2+\left(b-2\right)^2+\left(c-3\right)^2=0\)
\(\Leftrightarrow\left(a-1\right)^2=\left(b-2\right)^2=\left(c-3\right)^2=0\)
\(\Leftrightarrow a-1=b-2=c-3=0\)
\(\Leftrightarrow a=1;b=2;c=3\)
\(\Rightarrow a+b+c=1+2+3=6\)
\(\Leftrightarrow a^2-2a+1+4b^2-12b+9+3c^2-6c+3+1>0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(2b-3\right)^2+3\left(c-1\right)^2+1>0\) (luôn đúng)
\(\Rightarrow\) BĐT ban đầu đúng