Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a-1\right)^2\ge0\Rightarrow a^2+1-2a\ge0\Rightarrow a^2+1\ge2a\left(1\right)\)
\(\left(2b-3\right)^2\ge0\Rightarrow4b^2+9-12b\ge0\Rightarrow4b^2+9\ge12b\left(2\right)\)
\(\left(c\sqrt[]{3}-\sqrt[]{3}\right)^2\ge0\Rightarrow3c^2+3-6c\ge0\Rightarrow3c^2+3\ge6c\left(3\right)\)
\(\left(1\right)+\left(2\right)+\left(3\right)\Rightarrow a^2+1+4b^2+9+3c^2+3\ge2a+12b+6c\)
\(\Rightarrow a^2+4b^2+3c^2+1+9+3\ge2a+12b+6c\)
\(\Rightarrow a^2+4b^2+3c^2+13\ge2a+12b+6c\)
\(\Rightarrow a^2+4b^2+3c^2\ge2a+12b+6c-13\)
mà \(2a+12b+6c-13>2a+12b+6c-14\)
\(\Rightarrow a^2+4b^2+3c^2>2a+12b+6c-14\)
\(\Rightarrow dpcm\)
Bạn lạ ghê cho đề mà không nêu yêu cầu lấy gì mọi người giải được.
\(\Leftrightarrow a^2-2a+1+4b^2-12b+9+3c^2-6c+3+1>0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(2b-3\right)^2+3\left(c-1\right)^2+1>0\) (luôn đúng)
\(\Rightarrow\) BĐT ban đầu đúng
Lời giải:
$P=(4a^2+4ab+b^2)-12a-12b+3b^2+12$
$=(2a+b)^2-6(2a+b)+3b^2-6b+12$
$=(2a+b)^2-6(2a+b)+9+3(b^2-2b+1)$
$=(2a+b-3)^2+3(b-1)^2\geq 0+3.0=0$
Vậy $P_{\min}=0$
Giá trị này đạt tại $2a+b-3=b-1=0$
$\Rightarrow b=1; a=1$
Lời giải:
$P=(4a^2+4ab+b^2)-12a-12b+3b^2+12$
$=(2a+b)^2-6(2a+b)+3b^2-6b+12$
$=(2a+b)^2-6(2a+b)+9+3(b^2-2b+1)$
$=(2a+b-3)^2+3(b-1)^2\geq 0+3.0=0$
Vậy $P_{\min}=0$
Giá trị này đạt tại $2a+b-3=b-1=0$
$\Rightarrow b=1; a=1$
1: 2a+2b=2(a+b)
2: 2a+4b+6c
=2*a+2*2b+2*3c
=2(a+2b+3c)
3: \(-7a-14ab-21b=-7\left(a+2ab+3b\right)\)
4: \(2ax-2ay+2a=2a\left(x-y+1\right)\)
5: \(=3a\cdot ax-3a\cdot2ay+3a\cdot4=3a\left(ax-2ay+4\right)\)
6: \(=2\cdot2ax-2\cdot ay-2\cdot1=2\cdot\left(2ax-ay-1\right)\)
7: =a^2-(2b)^2
=(a-2b)(a+2b)
8: =(5a)^2-1^2
=(5a-1)(5a+1)
9: =9(16a^2-9)
=9(4a-3)(4a+3)
`a^2+b^2+c^2+d^2+1>=a+b+c+d`
`<=>4(a^2+b^2+c^2+d^2+1)>=4a+4b+4c+4d`
`<=>4a^2-4a+1+4b^2-4b+1+4c^2-4c+1+4d^2-4d+1>=0`
`<=>(2a-1)^2+(2b-1)^2+(2c-1)^2+(2d-1)^2>=0`(luôn đúng)
`=>a^2+b^2+c^2+d^2+1>=a+b+c+d`
Dấu "=" xảy ra khi `2a-1=2b-1=2c-1=2d-1=0<=>a=b=c=d=1/2`
Sửa đề: chứng minh:\(\frac{a^2}{\sqrt{12b^2+11bc+2c^2}}+\frac{b^2}{\sqrt{12c^2+11ca+2a^2}}+\frac{c^2}{\sqrt{12a^2+11ca+2b^2}}\ge\frac{3}{5}\)
Ta có: \(12b^2+11bc+2c^2=\frac{1}{4}\left(7b+3c\right)^2-\frac{1}{4}\left(b-c\right)^2\le\frac{1}{4}\left(7b+3c\right)^2\)
Do đó: \(\frac{a^2}{\sqrt{12b^2+11bc+2c^2}}\ge\frac{2a^2}{7b+3c}\).Tương tự hai BĐT còn lại rồi cộng theo vế thu được:
\(VT\ge\frac{2a^2}{7b+3c}+\frac{2b^2}{7c+3a}+\frac{2c^2}{7a+3b}\)
\(=2\left(\frac{a^2}{7b+3c}+\frac{b^2}{7c+3a}+\frac{c^2}{7a+3b}\right)\ge\frac{2\left(a+b+c\right)^2}{10\left(a+b+c\right)}=\frac{3}{5}\)(áp dụng BĐT Cauchy-Schwarz dạng Engel)
Ta có đpcm. Đẳng thức xảy ra khi a = b = c = 1
P/s: Is that true? Thấy đề nó là lạ nên sửa thôi chứ ko chắc rằng mình sửa đúng..
@Cool Kid: Cách của mình"
Đầu tiên ta xét hiệu: \(12b^2+11bc+2c^2-x\left(b-c\right)^2\). Ta chọn x để biểu thức sau khi phân tích có dạng một số chính phương.
\(=\left(12-x\right)b^2+\left(11+2x\right)bc+\left(2-x\right)c^2\)
\(=\left(12-x\right)\left(b+\frac{\left(11+2x\right)c}{2\left(12-x\right)}\right)^2+\left(2-x\right)c^2-\frac{\left(11+2x\right)^2c^2}{4\left(12-x\right)}\)
\(=\left(12-x\right)\left(b+\frac{\left(11+2x\right)c}{2\left(12-x\right)}\right)^2+c^2\left[\left(2-x\right)-\frac{\left(11+2x\right)^2}{4\left(12-x\right)}\right]\)
Đến đây thì ý tưởng đã rõ, ta chọn x sao cho 12 - x > 0 và:
\(\left(2-x\right)-\frac{\left(11+2x\right)^2}{4\left(12-x\right)}=0\). Bấm máy tính ta suy ra \(x=-\frac{1}{4}\)
Từ đó có thể dễ dàng suy ra cách phân tích bên trên
Ta có:
\(\left(a^2+4b^2+3c^2\right)-\left(20a+12b-6c-14\right)\)
\(=a^2+4b^2+3c^2-20a-12b-6c-14\)
\(=\left(a^2-2.a.10+100\right)+\left[\left(2b\right)^2-2.2b.3+9\right]+3\left(c^2+2c+1\right)-98\)
\(=\left(a-10\right)^2+\left(2b-3\right)^2+3\left(c+1\right)^2-98\ge-98\)
Vậy đề bài vô lý