Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chuyển 2a + 4b + 6c sang vế trái ta được:
a^2 + b^2 + c^2 -2a -4b -6c + 14 =0
<=> a^2 -2a + 1 + b^2 - 4b + 4 + c^2 - 6c +9 = 0
<=> (a-1)^2 + (b-2)^2 + (c-3)^2 = 0
=> (a - 1)^2 = 0 a - 1 = 0 a = 1
(b - 2)^2 = 0 <=> b - 2 = 0 <=> b = 2
(c - 3)^2 = 0 c - 3 = 0 c = 3
=> a + b + c = 1 + 2 + 3 = 6
Mình trình bày không được đẹp, bạn thông cảm nha =)
\(a^2+b^2+c^2+14=2a+4b+6c\)
\(a^2-2a+b^2-4b+c^2-6c+14=0\)
\(a^2-2\times a\times1+1^2-1^2+b^2-2\times b\times2+2^2-2^2+c^2-2\times c\times3+3^2-3^2+14=0\)
\(\left(a-1\right)^2+\left(b-2\right)^2+\left(c-3\right)^2=0\)
\(\left(a-1\right)^2\ge0\)
\(\left(b-2\right)^2\ge0\)
\(\left(c-3\right)^2\ge0\)
\(\Rightarrow\left(a-1\right)^2+\left(b-2\right)^2+\left(c-3\right)^2=0\)
\(\Leftrightarrow\left(a-1\right)^2=\left(b-2\right)^2=\left(c-3\right)^2=0\)
\(\Leftrightarrow a-1=b-2=c-3=0\)
\(\Leftrightarrow a=1;b=2;c=3\)
\(\Rightarrow a+b+c=1+2+3=6\)
\(\Leftrightarrow a^2-2a+1+4b^2-12b+9+3c^2-6c+3+1>0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(2b-3\right)^2+3\left(c-1\right)^2+1>0\) (luôn đúng)
\(\Rightarrow\) BĐT ban đầu đúng
đề bai
<=> \(a^2+b^2+c^2-4a-6c+2b+14=0\)
<=> \(\left(a^2-4a+4\right)+\left(b^2+2b+1\right)+\left(c^2-6c+9\right)=0\)
<=> \(\left(a-2\right)^2+\left(b+1\right)^2+\left(c-3\right)^2=0\)
mà \(\left(a-2\right)^2+\left(b+1\right)^2+\left(c-3\right)^2\ge0\)
dấu = xảy ra <=> \(\hept{\begin{cases}a=2\\b=-1\\c=3\end{cases}}\)
vậy ...
1. = 2(a+b)
2. =2(a-b)
3.=2(a+2b-3c)
4.=3(a-2b-3c)
5.=-4(a+2b+3c)
6.=-5(x+2xy+3y)
7.=-7(a+2ab+3b)
8.=6(xy-2x-3y)
9.=8(xy-3y+2x)
10.=9(ab-2a+1)
Lần sau bn cần ghi đề rõ ràng hơn
11.=x(y-1)
12.=a(x+1)
13.=m(x+y+1)
14.=-a(x+y+1)
15.=-a(x2+x+1)
16.=-2a(x+2y)
17.=2a(x-y+1)
18.=2(2ax-ay-2)
19.=5a(1-2x-3)
20.=-2ab(a+2b+3)
\(a^2+b^2+c^2+14-2a-4b-6c=0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-2\right)^2+\left(c-3\right)^2=0\)
mà \(\left(a-1\right)^2\ge0;\left(b-2\right)^2\ge0;\left(c-3\right)^2\ge0\)nên
\(\left\{{}\begin{matrix}a-1=0\\b-2=0\\c-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\\c=3\end{matrix}\right.\)