Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)3/7x=8/13y=6/19z và 2x-y-z =-6
b)x/8=y/3=7/10 va xy+yz+zx=1206
c) x/4=2y/5=5z/6 và x2- 3y2+2z2=325
a) \(\frac{3}{7}x=\frac{8}{13}y=\frac{6}{19}z\) và 2x-y-z =-6
=)\(\frac{x}{\frac{7}{3}}=\frac{y}{\frac{13}{8}}=\frac{z}{\frac{19}{6}}=\frac{2x}{\frac{14}{3}}=\frac{y}{\frac{13}{8}}=\frac{z}{\frac{19}{6}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{2x}{\frac{14}{3}}=\frac{y}{\frac{13}{8}}=\frac{z}{\frac{19}{6}}=\frac{2x-y-z}{\frac{14}{3}-\frac{13}{8}-\frac{19}{6}}=\frac{-6}{\frac{-3}{24}}=48\)
\(\Rightarrow\frac{x}{\frac{7}{3}}=48\Rightarrow x=48\times\frac{7}{3}=112\)
\(\Rightarrow\frac{y}{\frac{13}{8}}=48\Rightarrow y=48\times\frac{13}{8}=78\)
\(\Rightarrow\frac{z}{\frac{19}{6}}=48\Rightarrow z=48\times\frac{19}{6}=152\)
Vậy x=112;y=78;z=152
Bài 1 : Bài giải
Ta có :
\(A=7+7^2+7^3+...+7^8\)
\(A=\left(7+7^2+7^3+7^4\right)+\left(7^5+7^6+7^7+7^8\right)\)
\(A=7\left(1+7+7^2+7^3\right)+7^4\left(1+7+7^2+7^3\right)\)
\(A=7\cdot400+7^4\cdot400\)
\(A=7\cdot8\cdot50+7^4\cdot8\cdot50\)
\(A=50\left(7\cdot8+7^4\cdot8\right)\text{ }⋮\text{ }50\)
Bài 1 : Bài giải
Ta có :
\(A=7+7^2+7^3+...+7^8\)
\(A=\left(7+7^2+7^3+7^4\right)+\left(7^5+7^6+7^7+7^8\right)\)
\(A=7\left(1+7+7^2+7^3\right)+7^4\left(1+7+7^2+7^3\right)\)
\(A=7\cdot400+7^4\cdot400\)
\(A=7\cdot8\cdot50+7^4\cdot8\cdot50\)
\(A=50\left(7\cdot8+7^4\cdot8\right)\text{ }⋮\text{ }50\)
Ta có : (6 - x)2014 = (6 - x)2015
=> (6 - x)2014 - (6 - x)2015 = 0
<=> (6 - x)2014(1 - 6 - x) = 0
<=> \(\orbr{\begin{cases}\left(6-x\right)^{2014}=0\\1-6-x=0\end{cases}}\)
<=> \(\orbr{\begin{cases}6-x=0\\-5-x=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=6\\x=-5\end{cases}}\)
sory bạn trừng hợp hai mk nhầm :
1 - (6 - x) = 0
=> 1 - 6 + x = 0
=> -5 + x = 0
=> x = 5
b) \(\dfrac{7x-21}{14x-42}=\dfrac{2}{4}\)
\(\Leftrightarrow\dfrac{7\left(x-3\right)}{14\left(x-3\right)}=\dfrac{2}{4}\)
Ở tử và mẫu đều có chung x-3 nên loại
\(\Rightarrow\dfrac{7}{14}=\dfrac{2}{4}\Leftrightarrow\dfrac{2}{4}=\dfrac{2}{4}\) (đpcm)
c) \(\dfrac{9x-18}{18y-54}=\dfrac{2x-4}{4y-12}\)
\(\Leftrightarrow\dfrac{9\left(x-2\right)}{18\left(y-3\right)}=\dfrac{2\left(x-2\right)}{4\left(y-3\right)}\)
Ở tử VT và VP đều có tử là x-2 và mẫu là y-3 nên loại
\(\Leftrightarrow\dfrac{9}{18}=\dfrac{2}{4}\Leftrightarrow\dfrac{1}{2}=\dfrac{1}{2}\) (đpcm)