cho A=2+2^2+2^3+.....+2^100
chứng minhA chia hết cho 62
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để tính tổng của dãy số A=5+5^2+5^3+…+5^100, chúng ta có thể sử dụng công thức tổng của cấp số nhân. Công thức này là: S = a * (r^n - 1) / (r - 1), trong đó S là tổng của cấp số nhân, a là số hạng đầu tiên, r là công bội và n là số lượng số hạng. Trong trường hợp này, a = 5, r = 5 và n = 100. Áp dụng công thức, ta có: S = 5 * (5^100 - 1) / (5 - 1) Bạn có thể tính giá trị của S bằng cách sử dụng máy tính hoặc công cụ tính toán trực tuyến.
ta có :
`1^3` \(⋮\) `1`
\(2^3⋮2\)
\(3^3⋮3\)
.................
\(100^3⋮100\)
`=>` \(1^3+2^3+3^3+...+100^3⋮1+2+3+...+100\)
vậy `A` \(⋮\)`B`
\(\Rightarrow3B=3^2+3^3+3^4+...+3^{101}\\ \Rightarrow3B-B=3^2+3^3+...+3^{101}-3-3^2-3^3-...-3^{100}\\ \Rightarrow2B=3^{101}-3\\ \Rightarrow B=\dfrac{3^{101}-3}{2}\)
B = 31 + 32 + 33 + .... + 399 + 3100
3B = 3(31 + 32 + 33 + ..... + 399 + 3100)
3B = 32 + 33 + 34 +...... + 3100 + 3101
3B - B = 2B = (32 + 33 + 34 + .... + 3100 + 3101) - ( 31 + 32 + 33 + .... + 3100)
2B = (32 - 32) + (33 - 33) +.....+ ( 3100 - 3100) + ( 3101 - 1)
2B = 0 + 0 + 0 + ..... +0 + 3101 - 1
2B = 3101 - 1
B = (3101 - 1) : 2
2A=2^2+2^3+2^4+....+2^101
2A-A=(2^2+2^3+2^4+....+2^101) - (2+2^2+2^3+...+2^100)
1A=2^101 - 2
A= 2^101-2
a) (n+3)\(^2\)- (n+1)\(^2\) = (n+3-n-1).(n+3+n+1) = 2(2n+4) = 4(n+2)
Sẽ ko chia hết cho 8 nếu n là số lẻ!
b) (n+6)\(^2\)- (n-6)\(^2\) = (n+6-n+6).(n+6+n-6) = 12.2n = 24n chia hết cho 6 với mọi n
Xin 1 like nha bạn. Thx bạn, chúc bạn học tốt
a) Có A=2+22+23+24+...+2100
= 2.(1+2+4+8)+25.(1+2+4+8)+29(1+2+4+8)+...+296.(1+2+4+8)
=2.15+25.15+29.15+...+296.15
=15(2+25+29+...+296)
=> A \(⋮\) 15
b)
A=2+22+23+.....+2100
= (2 + 22 + 23 + 24) + .... + (297 + 298 + 299 + 2100)
= 1.30 + 24.30 + ..... + 296.30
= 30.(1+34+...+296)
=>A\(⋮\) 30 < = > A \(⋮\) 10
< = >A có tận cùng là 0
Ta có số hạng của A là:(100-1):1+1=100(số)
Nên A=(2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+2^10)+...+(2^96+2^97+2^98+2^99+2^100)
A=62+2^5*62+...+2^95*62=62*(1+2^5+...+2^95) Suy ra A chia hết cho 62.Tk mình nhé bn!
Ta có : 62 = 2 . 31
Mà A luôn chia hết cho 2 ( 1 )
A = 2 + 22 + 23 + .... + 2100
A = ( 2 + 22 + 23 + 24 + 25 ) + .... + ( 296 + 297 + 298 + 299 + 2100 )
A = 2 . ( 1 + 2 + 22 + 23 + 24 ) + ... + 296 . ( 1 + 2 + 22 + 23 + 24 )
A = 2 . 31 + ... + 296 . 31 \(⋮\)31 ( 2 )
Từ 1 và 2 => A chia hết cho 62
Vậy A chia hết cho 62